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Abstract. In this paper, we investigate the stabilization of a multi-input continuous-time linear
system over a communication network modeled as the cascade of an encoder, a set of parallel channels,
and a decoder. The channel capacities or signal-to-noise ratios are assumed to be fixed a priori. The
encoder/decoder pair can be designed, leading to a stabilization problem via coding/control co-design.
From a demand/supply balance point of view, the design of the encoder/decoder pair has the effect of
reshaping the demands for communication resource from different control inputs to match the given
supplies. We study the problem for the case of AWGN channels and fading channels, respectively. In
both cases, we arrive at a unified necessary and sufficient condition under which the coding/control
co-design problem is solvable. The condition is given by a majorization type relation. As we go along,
a systematic procedure is also put forward to carry out the coding/control co-design. A numerical
example is presented to illustrate our results.
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1. Introduction. A networked control system (NCS) is a feedback system in
which the feedback loop is closed over a communication network. It has been well
recognized that in networked control, whether stabilization can be achieved or not
critically depends on the information constraints in the communication network. As
such, a primary concern of networked stabilization is to find a fundamental limitation
on the information constraints so as to render stabilization possible. For a single-
input system, the networked stabilization problem has been extensively studied under
various information constraints. See [1, 37, 38, 54] for data rate constraint, [3] for
signal-to-noise ratio constraint, [14, 19] for quantization, [13] for fading effect, and
[56] for combined effect of quantization and packet drop, etc. Interestingly, all these
studies converge to a unified fundamental limitation on the information constraints
required for stabilization given by the topological entropy of the open-loop plant, i.e.,
the logarithm of the absolute product of unstable poles for a discrete-time plant, or
the sum of the unstable poles for a continuous-time plant.

There have been results reported for the stabilization of multi-input NCSs as well
[19, 21, 22, 57, 58, 45, 46, 8, 62]. The idea of channel resource allocation has been
proposed in [46] and followed by several other works such as [8, 15, 61, 62], etc. It was
assumed therein that the channel capacities can be allocated among different input
channels subject to a total capacity constraint. This gives rise to a channel/controller
co-design problem that is shown to be solvable, if and only if the total channel capacity
is greater than the topological entropy of the open-loop plant. Similar ideas, although
not stated explicitly, were used in [30, 49] to study multi-input networked stabilization
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over parallel Gaussian channels. Therein a constraint on total transmission power is
imposed while the power in each individual channel remains flexible.

Another approach exploiting diagonal encoding and decoding has been developed
in pioneering works [57, 58] to study stabilization of discrete-time multi-input multi-
output (MIMO) systems over parallel communication channels with individual signal-
to-noise ratio constraints. Therein the authors established a necessary and sufficient
condition for the networked stabilizability given in terms of the values and directions
of unstable poles of the plant. Recently, a necessary and sufficient condition of similar
spirit has been obtained in [45] for the stabilizability of discrete-time MIMO systems
over stochastic multiplicative noise channels.

Inspired by the existing works, we study in this paper the networked stabilization
of multi-input NCSs in which the communication network is modeled as a cascade of
an encoder matrix, a set of individually constrained channels, and a decoder matrix.
Both AWGN channels and fading channels are considered. The encoder matrix and
decoder matrix are to be designed, leading to a coding/control co-design stabilization
problem. A necessary and sufficient condition is obtained for networked stabilizability
given explicitly in terms of a majorization type relation. Partial results in this paper
have appeared in earlier conference versions [9, 10].

As mentioned, similar problem formulations have been adopted in [57, 58]. The
main differences between those works and this paper are two folds. Firstly, the encoder
matrix and decoder matrix were assumed to be diagonal in [57, 58]. In the current
paper, they are allowed to be general full matrices and not necessarily square. When
diagonal coding is used, each channel transmits a scaled version of a particular control
input. In contrast, when full matrices are used, both scaling and rotation are enabled
through coding and each channel transmits a linear combination of all control inputs.
Secondly, it was assumed in [57, 58] the number of channels are the same as that of
the control inputs. In our work, we allow the possibility to use more channels than the
number of control inputs. Both the general encoder/decoder pair and the redundancy
in the number of channels provide us more flexibility in the design, and thus, enables
further relaxation of the existing stabilizability conditions.

We wish to mention that majorization is a powerful mathematical tool [35] which
has been studied in mathematics by giants like Hardy, Littlewood, and Pólya in their
masterpiece [25] and has been widely used in statistics in the past 100 years. Its
engineering applications also appear in a broad range of areas, including but not
limited to wireless communication [42], information theory [11], operations research
[6], and power systems [40, 24]. The application of majorization in system and control
theory can be traced back to Rosenbrock’s structure theorem on invariant factor
assignment which was first reported in [47] and later revisited and extended in [63,
64, 65]. Recently, majorization has also been utilized to investigate the remote state
estimation with communication costs [32, 39].

The rest of this paper is organized as follows. Section 2 formulates the problem.
Section 3 presents some preliminary knowledge. Section 4 and 5 give the main results.
A numerical example is worked out in Section 6. Some conclusion remarks follow in
Section 7. The notation in this paper is more or less standard and will be made clear
as we proceed.

2. Problem Formulation. Consider the NCS depicted in Fig. 2.1. The plant
[A|B] is a continuous-time linear time-invariant system described by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,
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where A ∈ Rn×n and B ∈ Rn×m. Assume that [A|B] is unstable but stabilizable. Let
the state x(t) be available for feedback. If the communication network between the
controller and the plant is ideal, i.e., u(t) = v(t), one can easily design a state feedback
controller v(t) = Fx(t) so that the closed-loop system is stable. However, such state
feedback design faces challenges when the communication network is not ideal, i.e.,
u(t) is a distorted version of v(t), since the achievability of stabilization will depend on
the transmission accuracy of the communication network. We confine our attention
to LTI controllers in this paper. A general concern of networked stabilization is to
find a fundamental limitation on the quality of the communication network such that
the NCSs can be stabilized.
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Fig. 2.1. State feedback via communication network.

The idea of channel resource allocation as in [46, 8, 15, 61, 62] has been successful
in revealing the minimum total channel capacity rendering stabilization possible for
multi-input NCSs. This is based on a crucial assumption that the channel capacities
can be allocated among different input channels. What if the channel capacities are
individually constrained and thus not allocatable? In that case, the works in [57, 58]
suggested the use of a diagonal encoding and decoding scheme as an additional design
freedom to facilitate the networked stabilization. Driven by curiosity, we wish to ask:
What if full matrices, not necessarily diagonal, are exploited to implement the coding
scheme? Will that bring in new advantages? Also, is it possible and beneficial to use
more channels than the number of control inputs?

To answer these questions, we study the stabilization of a continuous-time multi-
input linear system over a communication network modeled as the cascade of a full
matrix encoder T , a set of l parallel channels, and a full matrix decoder R, as shown
in Fig. 2.2. The channels are now fixed a priori. Assume l ≥ m, i.e., the number of
channels can be greater than or equal to the number of control inputs. Later as we
proceed, it will become clear that l < m may also be valid in some cases. The encoder
matrix T ∈ Rl×m and decoder matrix R ∈ Rm×l are to be designed subject to certain
mild constraint. The specific form of the constraint will depend on the model of the
channels.
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Fig. 2.2. Communication Channels with Encoding and Decoding.

Note that with T and R being full matrices, each channel now transmits a linear
combination of all the control inputs. This imposes a combined effect of scaling and
rotation on the control signals, which is different from the scenario in [57, 58], wherein
each channel transmits a scaled version of a particular control input.
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We model the channels in two different ways. Firstly, the AWGN channels as in
Fig. 2.3 are considered. The channel input signal qi is a stationary process with a
certain predetermined admissible power level Pi, namely,

E[q2i ] < Pi. (2.1)

The signal transmission is corrupted by a zero-mean white Gaussian noise di with
power spectral density Ni. The ratio E[q2i ]/Ni is called the signal-to-noise ratio of
the channel. We consider the idealized case of infinite-bandwidth AWGN channels.
Such idealization simplifies the technicality, yet fulfills the purpose to bring out the
essential information limitation on networked stabilization. The capacity of such an
infinite-bandwidth AWGN channel with input power constraint Pi is given by [12]

Ci =
1

2

Pi

Ni
. (2.2)

The total channel capacity is given by C = C1 + C2 + · · ·+ Cl.

- ?i -+
pi

di
qi

Fig. 2.3. An AWGN channel.

We do not assume monotonicity among the channel capacities Ci, i = 1, 2, . . . , l.
Due to the predetermined admissible power levels, the capacities are fixed a priori and
thus, cannot be allocated as in [46, 8, 61, 62]. Nevertheless, the encoder/decoder pair
now provides a substitute design freedom in place of the channel resource allocation.
Specifically, the encoder matrix T and the decoder matrix R are to be designed subject
to the following constraint:

RT = I. (2.3)

The problem becomes to jointly design the controller and the encoder/decoder pair
so as to stabilize the system subject to the input power constraints (2.1). This gives
rise to a stabilization problem through coding/control co-design. We are interested in
obtaining a fundamental limitation on the channel capacities such that the resulting
coding/control co-design problem is solvable.

Other than the AWGN channels, we also consider the fading channels as shown in
Fig. 2.4. Here, the channel input signal qi is subject to a stochastic multiplicative noise
κi(t), where κi(t) is a continuous-time white noise process with mean E[κi(t)] = µi

and autocovariance E[(κi(t)−µi)(κi(t+τ)−µi)] = σ2
i δ(τ). The signal-to-noise ratio of

such a fading channel is SNRi =
µ2
i

σ2
i

. For future use, denote M = diag{µ1, µ2, . . . , µl},

and Σ2 = diag{σ2
1 , σ

2
2 , . . . , σ

2
l }.

- -κi(t)
piqi

Fig. 2.4. A fading channel.

As before, we do not assume any kind of monotonicity among SNRi, i = 1, 2, . . . , l.
Also, the signal-to-noise ratios of the channels are given a priori and fixed. The lack of
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channel resource allocation can be compensated by the substitute design freedom given
by the coding mechanism. A slight difference from the case of AWGN channels is that
now the encoder/decoder pair is to be designed subject to the following constraint:

RMT = I, (2.4)

which simply says that the output signal u has the same mean as the input signal v.
The controller designer is to jointly design the controller and encoder/decoder pair so
as to stabilize the system, leading to another stabilization problem via coding/control
co-design. We are interested in finding a fundamental limitation on the signal-to-noise
ratios such that the resulting coding/control co-design problem is solvable.

While Shannon capacity is used for the infinite-bandwidth AWGN channels, the
Shannon capacity of a fading channel when the distribution of the multiplicative noise
is unknown cannot be explicitly given [23]. It has been recognized that the Shannon
capacity is in general not sufficient to characterize the channels in a feedback loop due
to the causality constraint. Several attempts have been made in the literature to define
a suitable capacity notion for channels in a feedback system from an information-
theoretic point of view, for instance, [48, 36, 44].

This paper concentrates on continuous-time systems. A discrete-time counterpart
is also under our investigation, for which some preliminary results have been reported
in [59]. Although nowadays communication is mainly done digitally, most physical
systems to be controlled are in continuous-time. The controllers are often designed in
a continuous-time setting which can be implemented via discrete-time approximation.
As such, the capacity requirement for networked stabilization obtained for continuous-
time systems is of fundamental importance and is approximately equal to that derived
for the discretised systems due to the growing sampling rate. We also wish to mention
that much effort has been devoted to the performance limitation of networked control
systems on top of the networked stabilization, for instance, [27, 18, 31, 51, 53], etc.

Note that the communication network considered here can be regarded as a special
case of the MIMO transceiver recently developed in communication theory and widely
applied in wireless communication [42, 55]. As depicted in Fig. 2.5, a typical MIMO
transceiver consists of an encoder T , a MIMO channel characterized by a channel
matrix Z and additive white noise d, together with a decoder R. It is often built in
such a way that the dimensions of q and p are higher than the dimension of v and u so
as to exploit the spacial diversity to increase the data transmission capacity [42, 55].
Clearly, the communication model in Fig. 2.2 with AWGN channels can be seen as a
simple MIMO transceiver with Z = I. In this regard, this work serves as a starting
point in studying the networked stabilization over a general MIMO transceiver.

- T - Z - i? - R -+
v uq p

d

Fig. 2.5. A MIMO transceiver.

Before proceeding, we recall an important notion called topological entropy. Given
a continuous-time linear system ẋ(t) = Ax(t), its topological entropy is defined as the
quantity H(A) =

∑
R(λi)>0 λi, where λi are the eigenvalues of A. This quantity

appeared frequently in recent studies of networked control [1, 3, 7, 8, 38, 49, 61] as
a measure of instability of a linear system based on the minimum resource required
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for stabilizing the system. It also appeared in early control system literature, mostly
in the performance limitation of feedback control [16, 17]. A notion of topological
feedback entropy has recently been proposed in [38] which is shown to coincide with
the topological entropy in the case of an LTI system.

3. Preliminary.

3.1. Cyclic decomposition. Let A be an n × n real matrix. The minimal
polynomial of A is the monic polynomial α(λ) of least degree such that α(A) = 0.
The minimal polynomial of a matrix is unique. We say that A is cyclic if its minimal
polynomial has degree n, or equivalently, its minimal polynomial coincides with its
characteristic polynomial. The following lemma gives the cyclic decomposition of a
linear system, which plays an essential role in later developments.

Lemma 3.1. Given a stabilizable linear system [A|B] with A ∈ Rn×n and B ∈
Rn×m, there exist nonsingular matrices P and Q such that

[P−1AP |P−1BQ] =



A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ak


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗ ∗

0 b2
. . .

...
...

...
. . .

. . . ∗ ∗
0 · · · 0 bk ∗


 , (3.1)

where Ai, i = 1, 2, . . . , k, are cyclic with minimal polynomials αi(λ), such that α1(λ) =
α(λ) and αi+1(λ) divides αi(λ) for i = 1, 2, . . . , k−1. Moreover, the cyclic subsystems
[Ai|bi], i = 1, 2, . . . , k, are stabilizable.

The symbol ∗ in (3.1) represents the upper-right off-diagonal blocks of P−1BQ
that are nonzero in general but not much relevant in the developments to follow. The
number k as in Lemma 3.1 is referred to as the cyclic index of A and is unique. In fact,
it is given by the largest geometric multiplicity of the eigenvalues of A. The minimal
polynomials αi(λ), i = 1, 2, . . . , k, are also unique. Since αi+1(λ) divides αi(λ), it
follows that the spectrum of Ai+1 is contained in the spectrum of Ai. Consequently,
there naturally holds H(A1) ≥ H(A2) ≥ · · · ≥ H(Ak). For more details on the cyclic
decomposition of a matrix and cyclic decomposition of a linear system, one can refer
to [20, 60].

Remark 1. The subsystems [Ai|bi], i = 1, 2, . . . , k, are referred to as the cyclic
subsystems of [A|B]. The role of nonsingular matrices P and Q can be considered as
linear transformations in the state space and input space, respectively. The following
implication can be inferred from Lemma 3.1. In the cyclic decomposition (3.1), A1

contains the greatest number of unstable poles of [A|B] that can be stabilized by a single
control input up to linear transformations in the input space; likewise, A1 together with
A2 contains the greatest number of unstable poles of [A|B] that can be stabilized by two
control inputs up to linear transformations in the input space; and so on so forth.

3.2. Optimal complementary sensitivity. For the NCS considered in this
paper, assume temporarily that the channels are ideal and the encoder/decoder pair
is simply trivial, i.e., l = m and T = R = I. Then, the complementary sensitivity
function at the plant input is given by T (s) = F (sI − A − BF )−1B. As shown in
many existing works [3, 13, 49, 61] as well as later developments in this work, the
feedback stabilization in the presence of either additive noise or multiplicative noise
is closely related to the H2 optimal T (s). For preparation, the following lemma gives
a solution to H2 optimal T (s).



MAJORIZATION CONDITION FOR NETWORKED STABILIZATION 7

Lemma 3.2 ([7]). There holds

inf
F :A+BF is stable

∥T (s)∥2 = [2H(A)]
1
2 .

When A has no eigenvalues on the imaginary axis, the infimum can be achieved by
the optimal state feedback gain F = −B′X, where X is the stabilizing solution to the
algebraic Riccati equation

A′X +XA−XBB′X = 0.

3.3. Two mixed norms for systems. We define two mixed norms for anm×m
stable transfer function G(s) as follows:

∥G(s)∥2,1 =

(
max

1≤j≤m

m∑
i=1

∥G(s)ij∥22

) 1
2

, ∥G(s)∥2,∞ =

 max
1≤i≤m

m∑
j=1

∥G(s)ij∥22

 1
2

,

where ∥G(s)ij∥2 is the H2 norm of the (i, j)th entry of G(s).
A useful lemma is given below. The proof is simply a specialization of Theorem 2

in [50] to the matrix
[
∥G(s)ij∥22

]
and is thus omitted here for brevity.

Lemma 3.3. There holds

ρ
([
∥G(s)ij∥22

])
= inf

D∈D
∥D−1G(s)D∥22,1 = inf

D∈D
∥D−1G(s)D∥22,∞,

where D is the set of all m×m diagonal matrices with positive diagonal entries.

3.4. Majorization. As will be seen later, the main results in this paper are given
in terms of majorization type conditions. Here, we briefly review some basic concepts
and properties in majorization theory. For an extensive treatment of majorization
and its applications, one can refer to [35].

For x, y ∈ Rn, we denote by x↑ and y↑ the rearranged versions of x and y so that
their elements are arranged in a non-decreasing order. We say that x is majorized by
y, denoted by x 4 y, if

k∑
i=1

x↑
i ≥

k∑
i=1

y↑i , for k = 1, . . . , n− 1, and
n∑

i=1

x↑
i =

n∑
i=1

y↑i . (3.2)

Majorization orders the level of fluctuations when the averages are the same. In other
words, x4 y says that the elements of x are more even or, less spread out, than the
elements of y.

Now, if the last equality in (3.2) is changed to an inequality ≥, x is said to be
weakly majorized by y from above, denoted by x 4w y. Further, if all the inequalities
≥ in (3.2), including the last equality, are changed to strict inequalities >, then x is
said to be strictly weakly majorized by y from above, denoted by x ≺w y.

Note that the majorization 4 and the weak majorization 4w are pre-orders in Rn.
Also note that when two vectors are compared via majorization or weak majorization,
the order of elements in the vectors is irrelevant.

The following lemma characterizes the relation between majorization and weak
majorization.
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Lemma 3.4 ([35]). x 4w y (x ≺w y, respectively), if and only if there exists z
such that x ≥ z (x > z, respectively), and z 4 y.

Another useful lemma is given below.
Lemma 3.5 ([35]). There exists a real symmetric matrix X with eigenvalues

λ1, λ2, . . . , λn, and diagonal elements d1, d2, . . . , dn, if and only if[
d1 d2 · · · dn

]′ 4 [λ1 λ2 · · · λn

]′
.

When the condition in Lemma 3.5 is satisfied, efficient algorithms for finding the
desired symmetric matrix X have also been developed in the literature [5, 28].

4. Stabilizability over AWGN Channels with Linear Coding. In the case
when AWGN channels are considered, the closed-loop NCS is depicted in Fig. 4.1,
where T and R are to be designed subject to the constraint (2.3).

F - T - i - R - [A|B]
?

6

q
d

x

pv u

Fig. 4.1. NCS over AWGN channels with linear coding.

We confine our attention to the scenario when the closed-loop system is internally
stable such that the distribution of all signals converges exponentially to a stationary
distribution. Without loss of generality, we assume that the closed-loop system has
reached its steady state and all the signals are wide sense stationary. According to our
setup, the total noise d =

[
d1 d2 · · · dl

]′
is a vector white Gaussian noise with

power spectral density N = diag{N1, N2, . . . , Nl}. The complementary sensitivity
function, i.e., the closed-loop transfer function from d to q, is given by

T (s) = TF (sI −A−BRTF )−1BR = TF (sI −A−BF )−1BR.

Then, the power spectrum density of qi has the expression {T (jω)NT (jω)∗}ii and
consequently, the power of qi is given by E[q2i ] =

1
2π

∫∞
−∞{T (jω)NT (jω)∗}iidω, where

{·}ii stands for the ith diagonal element of a matrix. It follows that the input power
constraint (2.1) can be rewritten as

1

2π

∫ ∞

−∞
{T (jω)NT (jω)∗}iidω < Pi.

In view of (2.2), such constraint can be further translated into

1

2

1

2π

∫ ∞

−∞

{
N− 1

2T (jω)NT (jω)∗N− 1
2

}
ii
dω < Ci. (4.1)

The objective is to find the requirement on the channel capacities Ci, i = 1, 2, . . . , l,
such that the networked stabilization can be accomplished subject to the constraints
(4.1) via a judicious coding/control co-design. It is also our hope to come up with a
systematic procedure to perform the coding/control co-design.

In order to stabilize the NCS, each control input requires certain communication
resource for the transmission purpose. As such, the control inputs can be considered
as the demand side for the communication resource, while the channels are considered
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as the supply side. The supply capabilities of the channels are characterized by their
capacities. The challenge lies in that the channel capacities are given a priori and
thus, the demand and supply may not match in general. To resolve such imbalance of
demand and supply, it is crucial to understand that the encoder matrix T has an effect
of mixing the demands from different control inputs. With that in mind, an interesting
idea would be to exploit the coding mechanism judiciously so that after the mixing,
the demands will be reshaped properly so as to match the supplies. For comparison,
the channel resource allocation adopted in [46, 8, 15, 61] does the exact opposite, i.e.,
tailoring the supplies to match the demands. Note that demand shaping is a quite
general principle in economics. It has led to many successful stories in engineering
fields as well such as power systems [40, 52], transportation [41], and data networks
[33], etc.

The idea of demand shaping turns out to work perfectly. We arrive at a necessary
and sufficient condition for the solvability of the coding/control co-design problem
given in terms of a weak majorization relation, as shown in the following theorem.
The proof is simply making the above understanding precise in a formal way.

Theorem 4.1. [A|B] is stabilizable over AWGN channels through coding/control
co-design, if and only if[

C1 C2 · · · Cl

]′ ≺w
[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
, (4.2)

where H(Ai), i = 1, 2, . . . , k, are the topological entropies of the cyclic subsystems
[Ai|bi] as in (3.1).

Proof. For brevity, assume that all the eigenvalues of A lie in the open right half
complex plane. This assumption can be removed following the same arguments as in
[3, 8, 46, 61].

We first show the necessity. Note that the channels can always be reordered so
that their capacities are arranged in a non-increasing order. Therefore, without loss
of generality, assume that C1 ≥ C2 ≥ · · · ≥ Cl. Suppose there exists a state feedback
gain F together with an encoder matrix T and a decoder matrix R such that the NCS
is stabilized and the constraints (4.1) are satisfied. It suffices to show the inequality

l∑
i=j

Ci >
k∑

i=j

H(Ai) (4.3)

holds for j = 1, 2, . . . , k. The case when j = 1 is quite straightforward since

l∑
i=1

Ci >

l∑
i=1

1

2

1

2π

∫ ∞

−∞

{
N− 1

2T (jω)NT (jω)∗N− 1
2

}
ii
dω

=
1

2
∥N− 1

2T (s)N
1
2 ∥22 ≥ H(A) =

k∑
i=1

H(Ai),

where the second inequality follows from Lemma 3.2. We proceed to show the case
when j = 2. Let us carry out the controllable-uncontrollable decomposition to
the system [A|BR] with respect to the first column of BR, i.e., find a state space
transformation x(t) = Py(t) such that the system [A|BR] is transformed to[

ẏ1(t)
ẏ2(t)

]
=

[
Ã11 Ã12

0 Ã22

] [
y1(t)
y2(t)

]
+

[
B̃11 B̃12

0 B̃22

] [
p1(t)
p̃(t)

]
, (4.4)
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where

p1(t) = q1(t) + d1(t),

p̃(t) = q̃(t) + d̃(t),

q̃(t) =
[
q2(t) q3(t) · · · ql(t)

]′
,

d̃(t) =
[
d2(t) d3(t) · · · dl(t)

]′
.

Set F̃ =TFP and partition F̃ compatibly as F̃ =

[
F̃11 F̃12

F̃21 F̃22

]
. Consider the subsystem

[Ã22|B̃22] with closed-loop dynamics:

ẏ2(t) = Ã22y2(t) + B̃22q̃(t) + B̃22d̃(t),

q̃(t) = F̃22y2(t) + F̃21y1(t).

Applying the Laplace transform to both sides of the above equations yields

L(q̃(t)) =
[
T̃21(s) T̃22(s)

] [L(y1(t))
L(d̃(t))

]
,

where

T̃21(s) = F̃21 + F̃22(sI − Ã22 − B̃22F̃22)
−1B̃22F̃21,

T̃22(s) = F̃22(sI − Ã22 − B̃22F̃22)
−1B̃22.

Since y1(t) is independent of d̃(t), we have

E[q2i+1] ≥
1

2π

∫ ∞

−∞
{T̃22(jω)Ñ T̃22(jω)

∗}iidω,

for i = 1, 2, . . . , l − 1, where Ñ = diag{N2, N3, . . . , Nl}. Consequently, there holds

l∑
i=2

Ci >
l∑

i=2

1

2

E[q2i ]

Ni
≥ 1

2
∥Ñ− 1

2 T̃22(s)Ñ
1
2 ∥22 ≥ H(Ã22).

Meanwhile, it can be inferred from Remark 1 that H(Ã22)≥
∑k

i=2 H(Ai) and, thus,∑l
i=2 Ci>

∑k
i=2 H(Ai). In analogy to the above procedure, we can verify the validity

of inequality (4.3) for j = 3, . . . , k as well, which completes the necessity proof.
To show the sufficiency, we will seek a state feedback gain F together with an

encoder matrix T and a decoder matrix R such that the NCS is stabilized and the
constraints (4.1) are satisfied. Without loss of generality, assume that [A|B] is in the
cyclic decomposition form (3.1), where each cyclic subsystem [Ai|bi], i = 1, 2, . . . , k,
is stabilizable with state dimension ni. For each [Ai|bi], we can design a stabilizing
state feedback gain fi such that ∥Ti(s)∥22 = 2H(Ai), where

Ti(s) = fi(sI −Ai − bifi)
−1bi. (4.5)

The existence of such fi is due to Lemma 3.2. Let f = diag{f1, f2, . . . , fk} and design

F =

[
f

0(m−k)×n

]
. (4.6)
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It is straightforward to verify that F is stabilizing, i.e., A+BF is stable. Regarding
the encoder/decoder pair, let

T = N
1
2UD−1 and R = DU ′N− 1

2 , (4.7)

where U ∈ Rl×m is an isometry to be designed and D = diag{1, ϵ, . . . , ϵm−1} with ϵ
being a small positive number. Also set S = diag{In1 , ϵIn2 , . . . , ϵ

k−1Ink
}. Then

T (s) = TF (sI −A−BF )−1BR = N
1
2UF̄ (sI − Ā− B̄F̄ )−1B̄U ′N− 1

2 ,

where

F̄ = D−1FS = F, (4.8)

Ā = S−1AS =


A1 0 · · · 0

0 A2
. . .

...
...

. . .
. . . 0

0 · · · 0 Ak

 , (4.9)

B̄ = S−1BD =


b1 o(ϵ) · · · o(ϵ) o(ϵ)

0 b2
. . .

...
...

...
. . .

. . . o(ϵ) o(ϵ)
0 · · · 0 bk o(ϵ)

 , (4.10)

and o(ϵ)
ϵ approaches to a finite constant as ϵ → 0. It follows that

1

2

1

2π

∫ ∞

−∞
N− 1

2T (jω)NT (jω)∗N− 1
2 dω

= U

(
diag

{
∥T1(s)∥22

2
, . . . ,

∥Tk(s)∥22
2

, 0, . . . , 0

}
+ o(ϵ)

)
U ′

= U (diag{H(A1), . . . ,H(Ak), 0, . . . , 0}+ o(ϵ))U ′. (4.11)

When the relation (4.2) holds, by Lemma 3.4, there exists a vector
[
γ1 γ2 . . . γl

]′
such that [

C1 C2 . . . Cl

]′
>
[
γ1 γ2 . . . γl

]′
, (4.12)

and [
γ1 γ2 · · · γl

]′ 4 [H(A1) H(A2) · · · H(Ak) 0 · · · 0
]′
. (4.13)

Further, in view of (4.13) and Lemma 3.5, an isometry U can be constructed such
that

{U (diag{H(A1), . . . , H(Ak), 0, . . . , 0})U ′}ii = γi, (4.14)

for i = 1, 2, . . . , l. Finally, putting (4.11), (4.12), and (4.14) together, we can verify
that the constraints (4.1) are satisfied when ϵ is sufficiently small. This completes the
proof.

We wish to mention that the design of encoder/decoder pair and controller is not
unique in general. The constructive proof of Theorem 4.1 gives one way, among others,
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for such a coding/control co-design. The state feedback gain F is designed as in (4.6)
by solving H2 optimal complementary sensitivity for each cyclic subsystem [Ai|bi].
The encoder/decoder pair is designed as in (4.7), where D is a suitably chosen scaling
matrix, and U is an isometry which can be constructed by exploiting the algorithm
proposed in [5].

Let us now revisit the intuition of demand shaping to better digest this result. By
the knowledge of topological entropy and cyclic decomposition, the vector on the right-
hand side of (4.2) can be considered as the intrinsic demands for the communication
resource. Due to the coding mechanism, such demands will be mixed, leading to a set
of reshaped demands that are more even, or less spread out. The total demand will
remain the same after the mixing. Combining these observations yields that in order
to enable the reshaped demands to match the given supplies, the supplies must meet
the following two requirements:

1. The total supply is greater than the total demand, i.e., C > H(A).
2. The supplies from the communication channels are less spread out than the

most uneven demands.
The above two requirements are exactly what the condition (4.2) says in light of the
physical interpretation of weak majorization.

From the majorization condition (4.2), we can also infer that in some cases, it may
even be possible to stabilize the NCS with fewer channels than the number of control
inputs. In fact, the minimum number of channels needed for stabilization equals the
number of unstable cyclic subsystems [Ai|bi] yielded from the cyclic decomposition
(3.1). This is consistent with earlier studies [26, 60] in the literature that investigate
the minimum number of control inputs required to stabilize a linear system.

One can further deduce the following two corollaries from Theorem 4.1.
Corollary 4.2. If the cyclic decomposition of [A|B] has only one unstable cyclic

subsystem, then [A|B] is stabilizable over AWGN channels through coding/control co-
design, if and only if C > H(A).

Proof. When [A|B] has only one unstable cyclic subsystem, the weak majorization
condition (4.2) becomes[

C1 C2 · · · Cl

]′ ≺w
[
H(A) 0 · · · 0

]′
,

which holds, if and only if C > H(A).
Corollary 4.2 is consistent with the result in [49]. Also, it includes the single-input

system as a special case since a stabilizable single-input system only has one unstable
cyclic subsystem. Hence, this corollary suggests that to stabilize a single-input system
via coding/control co-design, we only require the total capacity be greater than the
topological entropy of the open-loop plant. How the individual channel capacities are
distributed is not relevant in this case.

Corollary 4.3. If C1 = C2 = · · · = Cl, then [A|B] is stabilizable over AWGN
channels through coding/control co-design, if and only if C > H(A).

Proof. When C1 = C2 = · · · = Cl, the condition (4.2) becomes

1

l

[
C C · · · C

]′ ≺w
[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
,

which holds, if and only if C > H(A).
Corollary 4.3 suggests that identical communication channels can help each other

best in transmitting the signals.
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Note that we use full matrices T and R to perform encoding and decoding, which
allows both scaling and rotation of control signals. If only scaling is allowed in some
practical scenarios, the stabilizability condition has been investigated in [57, 58]. In
the present setup, through the combined role of scaling and rotation, one can in effect
change the output directions of the unstable poles, and thus obtain a more relaxed
condition in terms of the majorization relation (4.2) due to the additional freedom
provided by rotation.

5. Stabilizability over Fading Channels with Linear Coding. The same
idea extends to the networked stabilization over fading channels with linear coding.
In this case, the closed-loop system has the form as shown in Fig. 5.1, where κ(t) =
diag{κ1(t), κ2(t), . . . , κl(t)} stands for the multiplicative noise in the fading channels.
The signal-to-noise ratios of these fading channels are fixed. As before, the encoder
matrix T and decoder matrix R are to be designed subject to a mild constraint as in
(2.4), leading to a stabilization problem via coding/control co-design.

F - T - κ(t) - R - [A|B]

6

q

x

pv u

Fig. 5.1. NCS over fading channels with linear coding.

Now, the dynamics of closed-loop system is given by ẋ(t) = [A+BRκ(t)TF ]x(t).
Different from the case of AWGN channels, here we do not assume that the closed-
loop system has reached its steady state. Denote by X(t) = E[x(t)x(t)′] the state
covariance. By Itô’s formula [29], the evolution of X(t) is governed by the following
matrix differential equation:

Ẋ(t) = (A+BF )X(t) +X(t)(A+BF )′ +BR[Σ2⊙(TFX(t)F ′T ′)]R′B′,

where ⊙ means Hadamard product. We say that [A|B] is mean-square stabilizable if
there exist a state feedback gain F and an encoder/decoder pair such that the closed-
loop system in Fig. 5.1 is mean-square stable, i.e., limt→∞ X(t) = 0. The aim is to
find the requirement on SNRi, i = 1, 2, . . . , l, such that the networked stabilization
can be accomplished via coding/control co-design.

The next lemma provides several equivalent criteria in verifying the mean-square
stabilizability. The equivalence between the implications (a), (b), and (c) can be shown
by specializing the well-established results in stochastic control [2]. The equivalence
between the implications (a) and (d) is simply the continuous-time counterpart of
Theorem 6.4 in [13]. The details of the proof are omitted here for brevity.

Lemma 5.1. The following statements are equivalent:
(a) [A|B] is mean-square stabilizable.
(b) There exist a state feedback gain and an encoder/decoder pair such that the

matrix inequality

(A+BF )X +X(A+BF )′ +BR[Σ2 ⊙ (TFXF ′T ′)]R′B′ < 0

has a solution X > 0.
(c) There exists an encoder/decoder pair such that the matrix inequality

A′X +XA−XBRM [Σ2 ⊙ (R′B′XBR)]−1MR′B′X < 0 (5.1)

has a solution X > 0.
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(d) There exist a state feedback gain and an encoder/decoder pair such that

inf
D∈D

∥D−1T (s)ΦD∥2,1 < 1, (5.2)

where D is the set of m×m diagonal matrices with positive diagonal entries,
Φ = M−1Σ, and T (s) = TF (sI −A−BF )−1BRM .

Applying Lemma 5.1 together with the demand shaping idea as in the previous
section, we manage to show the following result.

Theorem 5.2. [A|B] is mean-square stabilizable over fading channels through
coding/control co-design, if and only if

1

2

[
SNR1 SNR2 · · · SNRl

]′ ≺w
[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
, (5.3)

where H(Ai), i = 1, 2, . . . , k, are the topological entropies of the cyclic subsystems
[Ai|bi] as in (3.1).

Proof. As before, assume that all the eigenvalues of A lie in the open right half
complex plane for brevity.

We first show the necessity. Suppose [A|B] is mean-square stabilizable, we shall
show the relation (5.3) holds. Without loss of generality, assume that SNR1 ≥ SNR2 ≥
· · · ≥ SNRl. It suffices to show

1

2

l∑
i=j

SNRi >
k∑

i=j

H(Ai) (5.4)

holds for j = 1, 2, . . . , k. We start from the case when j = 1. By Lemma 5.1, there
exists an encoder/decoder pair such that the matrix inequality (5.1) has a solution

X > 0. Pre-multiplying and post-multiplying X− 1
2 on both sides of (5.1), and taking

trace for both sides of the resulted inequality yields

tr(X− 1
2A′X

1
2 ) + tr(X

1
2AX− 1

2 )− tr
{
X

1
2BRM [Σ2⊙(R′B′XBR)]−1MR′B′X

1
2

}
= 2H(A)−

l∑
i=1

SNRi < 0,

that validates (5.4) when j = 1. We now proceed to the case when j = 2. Let us carry
out the controllable-uncontrollable decomposition to the system [A|BR] with respect
to the first column of BR such that [A|BR] is transformed to the form (4.4), where

p1(t) = κ1(t)q1(t),

p̃(t) = κ̃(t)q̃(t),

q̃(t) =
[
q2(t) q3(t) · · · ql(t)

]′
,

κ̃(t) =
[
κ2(t) κ3(t) · · · κl(t)

]′
.

Set F̃ =TFP and partition F̃ compatibly as F̃ =

[
F̃11 F̃12

F̃21 F̃22

]
. Consider the subsystem

[Ã22|B̃22] with closed-loop dynamics

ẏ2(t) = [Ã22 + B̃22κ̃(t)F̃22]y2(t) + B̃22κ̃(t)F̃21y1(t),
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where the term F̃21y1(t) can be treated as a noise, the power of which goes to zero as
time goes to infinity. Then, by mimicking the proof of the case when j = 1, one can
validate the inequality (5.4) when j = 2. In the same spirit, one can also validate the
inequality (5.4) when j = 3, . . . , k, which completes the necessity proof.

For the sufficiency, we will seek a state feedback gain F together with an encoder
matrix T and a decoder matrix R such that the inequality (5.2) is satisfied. Without
loss of generality, assume that [A|B] is in the cyclic decomposition form (3.1), where
each cyclic subsystem [Ai|bi], i = 1, 2, . . . , k, is stabilizable with state dimension ni.
For each [Ai|bi], we can design a stabilizing state feedback gain fi such that ∥Ti(s)∥22 =
2H(Ai), where Ti(s) is given by (4.5). The existence of such fi is guaranteed by
Lemma 3.2. Let f = diag{f1, f2, . . . , fk} and design F as in (4.6). Regarding the
encoder/decoder pair, let

T = M− 1
2UD−1 and R = DU ′M− 1

2 , (5.5)

where U ∈ Rl×m is an isometry to be designed and D=diag{1, ϵ, . . . , ϵm−1} with ϵ
being a small positive number. Also set S = diag{In1 , ϵIn2 , . . . , ϵ

k−1Ink
}. Then

T (s) = TF (sI −A−BF )−1BRM = M− 1
2UF̄ (sI − Ā− B̄F̄ )−1B̄U ′M

1
2 ,

where F̄ , Ā, and B̄ are as in (4.8), (4.9), and (4.10), respectively. It follows that

∥M 1
2T (s)ΦM− 1

2 ∥22,1= max
1≤j≤l

1

2π

∫ ∞

−∞

{
ΦM− 1

2T ∗(jω)MT (jω)M− 1
2Φ
}
jj
dω

= max
1≤j≤l

{
ΦU(diag{∥T1(s)∥22, . . . , ∥Tk(s)∥22, 0, . . . , 0}+ o(ϵ))U ′Φ

}
jj

= max
1≤j≤l

{ΦU(diag{2H(A1), . . . , 2H(Ak), 0, . . . , 0}+ o(ϵ))U ′Φ}jj .

(5.6)

When the relation (5.3) holds, by Lemma 3.4, there exists a vector
[
γ1 γ2 . . . γl

]′
such that the inequalities

1

2

[
SNR1 SNR2 . . . SNRl

]′
>
[
γ1 γ2 . . . γl

]′
and (4.13) are satisfied. Further, by Lemma 3.5, an isometry U can be constructed
such that the equality (4.14) holds for i = 1, 2, . . . , l. Now, substituting (4.14) into

(5.6) yields ∥M 1
2T (s)ΦM− 1

2 ∥22,1 = max1≤j≤l
2γj

SNRj
+ o(ϵ). It is clear that when ϵ is

sufficiently small, we have ∥M 1
2T (s)ΦM− 1

2 ∥2,1 < 1, which completes the proof.

All the discussions following Theorem 4.1 apply here as well. Also, Corollary 4.2
and Corollary 4.3 can be adapted straightforwardly to the case of fading channels.
We omit the detailed statements for brevity.

6. Example. Consider the following unstable system [A|B]:

A =


4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 , B =


1 1
1 1
1 1
0 1

 ,
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with initial condition x0 =
[
1 1 1 1

]′
. Clearly, [A|B] is stabilizable. Moreover, it

is already in the cyclic decomposition form (3.1) with cyclic subsystems

[A1|b1] =

4 0 0
0 2 0
0 0 1

∣∣∣∣∣∣
11
1

 and [A2|b2] = [1|1].

It follows that H(A1) = 4 + 2 + 1 = 7, and H(A2) = 1.
We first consider the stabilization over three AWGN channels. For simplicity, let

N = I. The admissible transmission power of these channels are given by P1 = 9.1,
P2 = 3.1, and P3 = 4.1. In view of (2.2), the channel capacities are C1 = 4.55,
C2 = 1.55, and C3 = 2.05. One can easily verify that the strictly weak majorization
relation (4.2) holds. By Theorem 4.1, the networked stabilization can be accomplished
via certain coding/control co-design. One such co-design is carried out as below.

For the controller design, we solve the H2 optimal Ti(s) as in (4.5) for each cyclic
subsystem [Ai|bi], i = 1, 2, yielding the optimal feedback gains f1 =

[
−40 36 −10

]
and f2 = −2, respectively. Let

F = diag{f1, f2} =

[
−40 36 −10 0
0 0 0 −2

]
. (6.1)

As for the coding design, let the encoder T and decoder R be as in (4.7) with

U =

 0.7817 0.4714
0.4629 0
−0.4179 0.8819

 and D =

[
1 0
0 0.1

]
.

With this co-design, we observe that the closed-loop poles are exactly the mirror
images of the open-loop poles with respect to the imaginary axis. This validates the
stability of the closed-loop system. Moreover, further computation yields

E[q21 ] = 9.0848 < P1, E[q22 ] = 3.0299 < P2, E[q23 ] = 4.0249 < P3,

i.e., the input power constraints (2.1) are satisfied. Combining these observations, we
see that the networked stabilization is accomplished via this coding/control co-design.

Next, we consider the case of three fading channels. The mean and covariance of
the multiplicative noise κ(t) are given by

M =

2 0 0
0 0.6 0
0 0 0.9

 , Σ2 =

0.35 0 0
0 0.2 0
0 0 0.25

 ,

respectively. The signal-to-noise ratios of these fading channels are SNR1 = 11.4286,
SNR2=1.8, and SNR3=3.24. Again, we can verify that the strictly weak majorization
relation (5.3) is satisfied and, thus, the mean-square stabilization can be accomplished
via coding/control co-design. One such co-design is carried out as below.

For the controller design, we use the same state feedback gain as in (6.1). For the
coding design, let the encoder T and decoder R be as in (5.5) with

U =

0.8952 −0.1993
0 0.8944

0.4456 0.4004

 and D =

[
1 0
0 0.1

]
.

Under this coding/control co-design, the closed-loop system is mean-square stable.
As in Fig. 6.1, the Frobenius norm of the state covariance goes to zero asymptotically.
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Fig. 6.1. Closed-loop evolution of ∥X(t)∥F .

7. Conclusion. In this paper, we study the stabilization of a continuous-time
linear system over a communication network modeled as the cascade of an encoder, a
set of parallel channels, and a decoder. The channel capacities or signal-to-noise ratios
are fixed while the encoder/decoder pair can be designed. We first consider the AWGN
channels and then the fading channels. In both cases, the resulting coding/control
co-design problem is shown to be solvable if and only if a majorization type condition
is satisfied.

We conclude by echoing the motivating questions raised before. Both the general
full matrix encoder/decoder pair and the redundancy in the communication channels
bring in new advantages in stabilizing NCSs.

1) The use of full matrix encoder/decoder pair enables further relaxation of the
stabilizability condition compared to that obtained in [57, 58], where diagonal
encoder/decoder pair was exploited.

2) Using more channels than the number of control inputs has the advantage of
reducing the capacity requirement for individual channels. For example, one
can use a number of channels with small capacities to stabilize a single-input
system as long as the total capacity is greater than the topological entropy.
Similar ideas of introducing redundancy can be found in many other areas
as well such as error-correcting codes [43], over-sampled filter banks [4], and
signal compression [34], etc.

3) By virtue of the coding mechanism, in some cases, it may even be possible to
stabilize an NCS with fewer channels than the number of control inputs. The
minimum number of channels needed equals the number of unstable cyclic
subsystems yielded from the cyclic decomposition.
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