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Abstract— In this paper, the indefinite linear quadratic (LQ)
optimal control of continuous-time linear time-invariant (LTI)
systems with random input gains is studied. One main novelty of
this work is the use of channel/controller co-design framework
which bridges and integrates the design of the channels and
controller. The co-design is carried out by the twist of channel
resource allocation, i.e., the channel capacities can be allocated
among the input channels by the control designer subject
to an overall capacity constraint. With the channel/controller
co-design, necessary and sufficient conditions for the well-
posedness as well as the attainability of the indefinite LQ
problem concerned are obtained. The optimal control law is
given by a linear state feedback associated with the mean-
square stabilizing solution of a modified algebraic Riccati
equation.

I. INTRODUCTION

Stochastic systems are attracting more and more attention
due to wide applications in different areas, such as networked
control systems (NCSs), financial engineering, etc. Parallel to
the control theory for deterministic systems, the stabilization
as well as the optimal control of the stochastic systems have
been investigated widely. A general study of the stochastic
control systems can be found in [5], [6], [8] and the
references therein.

The LQ optimal control is one of the most important
classes of optimal control problems, in both theory and
application. It adopts a quadratic cost function of the plant
state and control input with a symmetric weighting matrix.
In general, the weighting matrix can be indefinite.

The definite stochastic LQ optimal control is much related
to the stochastic H2 control and has been studied extensively
in the literature. In particular, much research has been done
recently in the context of NCSs [7], [11], [12], [19], most
of which treats the definite LQ optimal control as part of
the Linear Quadratic Gaussian (LQG) control problem. In
[12], [19], the LQG control of a discrete-time multi-input-
multi-output (MIMO) NCS with a single packet-dropping
input channel and a single packet-dropping output channel
is studied under the TCP-like protocols. It is shown therein
that the optimal stabilizing controller exists if and only if
the packet arrival rates in the input and output channels
are larger than certain critical values respectively. The latest
work in [22], [4] studies the definite LQ optimal control
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of LTI systems with random input gains for the discrete-
time and continues-time case, respectively. By virtue of
the channel/controller co-design, the infinite-horizon LQ
problem is solved with the optimal control law given by a
linear state feedback.

Researchers have also made effort to study the indefinite
stochastic LQ optimal control, which plays a significant
role in stochastic H∞ control and robust control as well
as various financial engineering problems such as investment
optimization. The work in [17] investigates the indefinite LQ
optimal control of a continues-time stochastic system with
scalar multiplicative state and control dependent noise. It is
shown therein that the indefinite LQ problem is solvable if
and only if a non-standard algebraic Riccati equation has
a mean-square (MS) stabilizing solution. The results for
the discrete-time counterpart are reported in [15]. Similar
approaches can be found in [5], [6], where the indefi-
nite stochastic LQ optimal control with multidimensional
state and control dependent noise is investigated for the
continuous-time and discrete-time case, respectively.

Inspired by the above results, we study the indefinite LQ
optimal control of continuous-time LTI systems with random
input gains. The problem we consider is much more involved
than a special case of the LQ stochastic optimal control
studied in [5], [6]. In our setup, motivated from numerous
applications in NCSs, distributed systems and economic
systems, each component of the control signal is subject
to independent stochastic perturbation. More insights can be
gained for such systems with this special structure compared
to the general stochastic systems. Indeed, we put the LQ
problem under the framework of channel/controller co-design
which is one main novelty of this work. It is assumed that
the controller designer also has the freedom to participate in
the channel design. Due to this additional design freedom,
the objective becomes to simultaneously design the controller
and channels so as to minimize the cost function. The well-
posedness and attainability of the indefinite LQ problem
concerned is studied with the channel/controller co-design,
as elaborated in the rest of this paper.

Note that the framework of channel/controller co-design
is first proposed in the conference paper [10] to study the
stabilization of multi-input NCSs and then extended in [16].
Following this framework, several other works have been
carried out, e.g., [20], [21], [22], [4].

The remainder of this paper is organized as follows. The
indefinite stochastic LQ optimal control problem is formu-
lated and some concepts, especially the channel/controller
co-design framework, are introduced in Section II. Some



preliminary knowledge on the MS stabilizability is presented
in Section III. Section IV investigates the well-posedness
of the indefinite LQ problem. The attainability of a well-
posed problem is studied in Section V, where the optimal
controller and the minimum value of the cost function is
obtained. Finally, conclusions follow in Section VI.

Most notations in this paper are more or less standard
and will be made clear as we proceed. The symbol⊙means
Hadamard product. The identity under Hadamard product,
denoted by E, is a matrix with all elements equal to 1. The
set of n× n symmetric matrices are denoted by Sn.

II. PROBLEM FORMULATION

Consider the system described by the following stochastic
differential equation:

ẋ(t) = Ax(t) +Bκ(t)u(t), x(0) = x0, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is
the control input, κ(t) = diag{κ1(t), κ2(t), . . . , κm(t)} is
a random matrix process consisting of diagonal mutually
independent white noise process elements κi(t) with mean
µi = E[κi(t)] and variance σ2

i = E[(κi(t) − µi)
2]. The

real matrices A and B are assumed to have compatible
dimensions. Let the state x(t) be available for feedback. The
control signal u(t) is generated by a finite-dimensional LTI
controller K with a state space realization:

ẋK(t) = AKxK(t) +BKx(t),

u(t) = CKxK(t) +DKx(t).

The dimension of the controller state xK(t) is not specified a
priori. Note that the system (1) reduces to a deterministic LTI
system when κ(t) is a constant diagonal matrix. Therefore, it
can be regarded as an LTI system with independent random
input gains. Such systems are motivated from many practical
applications. For example, in NCSs, very often the actuators
are located far away from each other and the controller. Thus,
it is reasonable to assume that each component of the control
signal is sent through an independent communication channel
to the corresponding actuator.

For the i-th input channel of system (1), the signal-to-noise
ratio is defined to be SNRi =

µi

σi
. Denote

M , diag{µ1, µ2, . . . , µm},Σ2 , diag{σ2
1 , σ

2
2 , . . . , σ

2
m},

W , M−2Σ2 = diag{SNR−2
1 , SNR−2

2 , . . . , SNR−2
m }.

The MS capacity of the ith input channel is defined as

Ci ,
1

2

µ2
i

σ2
i

=
1

2
SNR2

i .

The overall channel capacity is then given by C =
∑m

i=1 Ci.
We study the state feedback indefinite LQ optimal control

of system (1). Denote xc(t) =
[
x(t)′ xK(t)′

]′, then the
closed-loop system can be written as

ẋc(t) = [Ã+ B̃κ(t)C̃]xc(t),

where Ã =

[
A 0
BK AK

]
, B̃ =

[
B
0

]
, C̃ =

[
DK CK

]
.

A controller K is said to be MS stabilizing if for every

initial state x0, the closed-loop state xc(t) of (1) satisfies
limt→∞ E[xc(t)x

′
c(t)] = 0. For a given initial state x0,

consider the following cost function:

J(x0, u(t)) =E

∫ ∞

0

[
x(t)

κ(t)u(t)

]′[
Q S
S′ R

][
x(t)

κ(t)u(t)

]
dt (2)

=E

∫ ∞

0

[
x(t)

Mu(t)

]′[
Q S
S′ (E+W )⊙R

][
x(t)

Mu(t)

]
dt,

where
[
Q S
S′ R

]
is a symmetric weighting matrix that can be

indefinite. One traditional way to formulate the LQ optimal
control problem is to fix the channel capacities a priori and
then find a stabilizing state feedback controller such that
J(x0, u(t)) is minimized for every initial state x0. However,
fixing the channel capacities a priori may not be desirable
since the problem may be unsolvable under certain given set
of capacities. It is a wise expectation that the existence of
an MS stabilizing controller is much relevant to the input
channel capacities. If the channels are too bad with too
much noise, even a stabilizing controller does not exist, let
alone the optimal one. The minimum capacities required for
stabilization is discussed in the next section.

To tackle this difficulty, the channel/controller co-design
framework provides a significant insight, which is one main
novelty of this work. In this case, the individual channel
capacities Ci are not assumed to be given. Instead, they can
be designed, or allocated under an overall capacity constraint
C. The allocation of the overall capacity to the individual
channels, called channel resource allocation, can be formally
given by a probability vector π =

[
π1 π2 . . . πm

]′,
where 0 ≤ πi ≤ 1,

∑m
i=1 πi = 1, such that Ci = πiC. With

the channel/controller co-design, we formulate the optimal
control problem as to simultaneously design an allocation π
and an optimal MS stabilizing controller K to minimize the
cost function J(x0, u(t)) for every initial state x0.

We define the value function V under a feasible allocation
π as

V (x0) = inf
K is MS stabilizing

J(x0, u(t)).

If the matrix
[
Q S
S′ R

]
is positive semi-definite, as in [4],

then J(x0, u(t)) is nonnegative by nature. However, here we

allow
[
Q S
S′ R

]
to be indefinite. In this case, it may happen

that J(x0, u(t)) is not bounded from below. The indefinite
LQ problem considered is said to be well-posed if

−∞ < V (x0) < +∞, ∀x0 ∈ Rn.

A well-posed problem is said to be attainable if there exists
an MS stabilizing controller, referred to as the optimal
controller, that achieves the infimum.

Before proceeding, recall that the topological entropy [2]
of a matrix A ∈ Rn×n is given by h(A) =

∑
|λi|>1 ln |λi|,

where λi are the eigenvalues of A. Based on this, we define
the topological entropy of the continuous-time system ẋ(t) =
Ax(t) as H(A) = h(eA) =

∑
R(λi)>0 λi, where λi are the

eigenvalues of A.



III. PRELIMINARY

In this section, we present some preliminary knowledge
on the MS stabilizability.

Consider the following stochastic system

ẋ(t) = (A+
m∑
i=1

Aiωi(t))x(t), (3)

where ω1(t), . . . , ωm(t) are independent zero-mean white
noise with variance 1.

Definition 1: The stochastic system (3) is said to be MS
stable if for any initial state x(0), N(t) , E[x(t)x′(t)] is
well-defined for any t > 0 and limt→∞ N(t) = 0.

Several criterions in verifying the MS stability are given
in the following lemma.

Lemma 1: The following assertions are equivalent:
(a) The stochastic system (3) is MS stable.
(b) There exists a matrix X > 0 such that

A′X +XA+
m∑
i=1

A′
iXAi < 0.

(c) For an arbitrary P ∈ Sn, there exists a unique X ∈ Sn

such that

A′X +XA+
m∑
i=1

A′
iXAi + P = 0.

Moreover, if P > 0 (respectively, P ≥ 0), then X > 0
(respectively, X ≥ 0).
Proof: The equivalence of (a) and (b) can be referred to

[3]. The equivalence of (a) and (c) can be shown by applying
Theorem A.1 in [9].

Back to the system (1), as mentioned before, state
feedback stabilizing controller may not exist if the channel
capacities Ci are fixed a priori. To cope with this difficulty,
the channel resource allocation provides a significant insight.
In this case, the controller designer not only designs the
controller but also chooses a feasible allocation vector π
such that Ci = πiC so as to stabilize the system (1) in the
MS sense. In the following definition of MS stabilizability,
we focus on the static state feedback. In fact, it has been
shown in [20] that MS stabilization can be accomplished by
dynamic state feedback if and only if it can be accomplished
by static state feedback.

Definition 2: The system (1) is said to be MS stabilizable
with capacity C if there is an allocation π and a state
feedback gain F such that the closed-loop system

ẋ(t) = (A+Bκ(t)F )x(t) (4)

= (A+BMF +
m∑
i=1

σiBiFiωi(t))x(t),

with Ci = πiC is MS stable.
Remark 1: When C = ∞, Definition 2 reduces to that of

classical stabilizability of [A|B].
The next lemma gives a necessary and sufficient condition

on the MS stabilizability.

Lemma 2 ([20]): The system (1) is MS stabilizable with
capacity C if and only if [A|B] is stabilizable and C > H(A).

When the conditions in Lemma 2 are satisfied, how
to judiciously choose the allocation π and simultaneously
design the state feedback gain F so that the system (1) is
MS stabilized is also discussed in [20].

Throughout the rest of this paper, it is always assumed
that the system (1) is MS stabilizable with capacity C.

IV. WELL-POSEDNESS OF INDEFINITE LQ PROBLEM

In this section, we investigate the condition under which
the indefinite stochastic LQ optimal control problem is well-
posed. The attainability is addressed in the next section.

First, we give a lemma that will be frequently used in the
developments to follow.

Lemma 3: For a given X ∈ Sn, it holds

E

∫ t

0

[
x(τ)

Mu(τ)

]′[
A′X+XA XB

B′X W⊙(B′XB)

][
x(τ)

Mu(τ)

]
dτ

= E[x(t)′Xx(t)]− x′
0Xx0. (5)

Proof: Let L(t) = x(t)′Xx(t). Applying Itô’s formula
[13] to L(t), we have

L̇(t) =[Ax(t)+Bκ(t)u(t)]′Xx(t)

+ x(t)′X[Ax(t)+Bκ(t)u(t)]

+ [B(κ(t)−M)u(t)]′X[B(κ(t)−M)u(t)].

Then the desired result follows from integrating both sides
of the above equation and taking expectations.

Define the operator LF (·) :Sn→Sn as

LF (X) ,(A+BMF )′X+X(A+BMF )

+ F ′(Σ2⊙(B′XB))F.

Also denote

ΨF ,
[

I
MF

]′[
Q S
S′ (E+W )⊙R

][
I

MF

]
.

The next lemma is useful to establish the upper-boundedness
of the value function V (x0).

Lemma 4: Let u(t) = Fx(t) be MS stabilizing under a
feasible allocation π. Then the corresponding cost (2) is
given by J(x0, u(t)) = x′

0Xx0, where X is the unique
solution to the matrix equation

LF (X) = −ΨF . (6)
Proof: Since u(t) = Fx(t) is MS stabilizing, in view of

Lemma 1 (c), the matrix equation (6) has a unique solution
X . By some simple calculations, we have

J(x0, u(t))

= E

∫ ∞

0

[
x(t)

Mu(t)

]′[
Q S
S′ (E+W )⊙R

][
x(t)

Mu(t)

]
dt

= E

∫ ∞

0

x(t)′ΨFx(t)dt

= −E

∫ ∞

0

x(t)′LF (X)x(t)dt

= −E

∫ ∞

0

[
x(t)

Mu(t)

]′[
A′X+XA XB

B′X W⊙(B′XB)

][
x(t)

Mu(t)

]
dt.



Applying Lemma 3 yields

J(x0, u(t)) = x′
0Xx0 − lim

t→∞
E[x(t)′Xx(t)] = x′

0Xx0,

that completes the proof.
Recall that the indefinite LQ problem of our concern

is well-posed if −∞ < V (x0) < +∞ for every initial
condition x0. Under the assumption that the system (1) is MS
stabilizable with capacity C, there exist a feasible allocation
π together with an MS stabilizing state feedback control
u(t) = Fx(t). Then Lemma 4 implies that V (x0) is upper-
bounded by x′

0Xx0, where X is the unique solution to the
matrix equation (6). Hence, V (x0) < +∞ is automatically
satisfied and we only need to concern whether V (x0) is
bounded from below.

To establish the main result on the well-posedness, another
lemma will be useful.

Lemma 5: The indefinite stochastic LQ problem con-
cerned is well-posed if and only if there exists a unique
X ∈ Sn such that V (x0) = x′

0Xx0 for all x0.
Lemma 5 can be proved analogously to Proposition 2 in

[14]. The details are omitted here for brevity.
Define the linear operator D(·) : Sn → Sn as

D(X) , W⊙(B′XB)+(W+E)⊙R.

We are now in a position to present the following theorem
which gives a necessary and sufficient condition for the well-
posedness.

Theorem 1: Under a feasible allocation π, the indefinite
stochastic LQ problem concerned is well-posed if and only
if there exists X ∈ Sn satisfying the linear matrix inequality
(LMI): [

A′X +XA+Q XB + S
B′X + S′ D(X)

]
≥ 0. (7)

Proof: To prove the sufficiency, assume that there exists
a matrix X ∈ Sn such that (7) holds. Then for any u(t)
generated by an MS stabilizing controller, we have

J(x0, u(t))

= E

∫ ∞

0

[
x(t)

Mu(t)

]′[
Q S
S′ (E+W )⊙R

][
x(t)

Mu(t)

]
dt

≥−E

∫ ∞

0

[
x(t)

Mu(t)

]′[
A′X+XA XB

B′X W⊙(B′XB)

][
x(t)

Mu(t)

]
dt

= x′
0Xx0 − lim

t→∞
E[x(t)′Xx(t)] = x′

0Xx0,

where the second equality follows from Lemma 3. This
implies that V (x0) ≥ x′

0Xx0 and thus, the indefinite LQ
problem is well-posed.

To prove the necessity, by Lemma 5, if the indefinite LQ
problem is well-posed, then there exists a unique X ∈ Sn

such that V (x0) = x′
0Xx0 for all x0. By the knowledge of

dynamic programming [1], it holds

x′
0Xx0 ≤E

[∫ t

0

[
x(τ)

Mu(τ)

]′[
Q S
S′ (E+W )⊙R

][
x(τ)

Mu(τ)

]
dτ

+ x(t)′Xx(t)

]
,

for all t ≥ 0 and any u(t) generated by an MS stabilizing
controller. Applying the above inequality together with
Lemma 3 leads to

E

∫ t

0

[
x(τ)

Mu(τ)

]′[
A′X+XA+Q XB+S

B′X+S′ D(X)

][
x(τ)

Mu(τ)

]
dτ ≥ 0.

Dividing both sides by t and letting t → 0 implies[
x(0)

Mu(0)

]′[
A′X +XA+Q XB + S

B′X + S′ D(X)

][
x(0)

Mu(0)

]
≥ 0.

Since the choice of x(0) is arbitrary, it follows that the matrix
X indeed satisfies the LMI (7). This completes the proof.

V. ATTAINABILITY OF INDEFINITE LQ PROBLEM

This section studies the attainability of the indefinite
stochastic LQ optimal control problem. Theorem 1 shows
that the wellposedness of the LQ problem is determined by
the solvability of the LMI (7). In this section, for simplicity,
we confine our attention to a broad class of well-posed
problems for which LMI (7) has a solution X such that
D(X) is nonsingular, or equivalently, the following LMIs

[
A′X +XA+Q XB + S

B′X + S′ D(X)

]
≥ 0,

D(X) > 0.

(8)

has a solution. A similar approach can be used to address
the general case which will be a bit more complex due to
the possible singularity of D(X).

In the sequel, a type of modified algebraic Riccati equation
(MARE) is first investigated and then employed to study the
attainability of the indefinite stochastic LQ optimal control.

A. MARE

The following MARE will play an essential role in later
developments:

A′X+XA+Q−(XB+S)D(X)−1(B′X+S′) = 0. (9)

A solution X to (9) is said to be MS stabilizing if the
associated state feedback gain

F = −M−1D(X)−1(B′X + S′) (10)

makes the closed-loop system (4) MS stable.
Remark 2: When C = ∞, the MARE (9) reduces to the

classical continuous-time algebraic Riccati equation.
The MARE (9) is closely related to the LMIs (8). Define

the operator R(·) : Sn → Sn as

R(X) , A′X+XA+Q−(XB+S)D(X)−1(B′X+S′)

and the sets

Ω , {X|X ∈ Sn,R(X) ≥ 0,D(X) > 0},
Γ , {X|X ∈ Sn,R(X) > 0,D(X) > 0}.

By the knowledge of Schur complement, Ω is in fact the
solution set to (8). Apparently, Γ ⊂ Ω. The LMIs (8) is said
to be feasible if Ω ̸= ∅ and is said to be strictly feasible if
Γ ̸= ∅. Convex optimization technique can be used to check



numerically whether the LMIs (8) is feasible (respectively,
strictly feasible) or not. The maximal solution to feasible
LMIs (8), denoted as X+, is the maximal element in Ω in
the sense that X+ ≥ X for all X ∈ Ω. The maximal solution,
if exists, is unique.

The following lemma investigates the existence of the
maximal solution X+ and establishes a link between X+

and the MS stabilizing solution to the MARE (9).
Lemma 6: If Ω ̸= ∅ under a feasible allocation π, then

the LMIs (8) has a maximal solution X+. Moreover, X+ is
a solution to the MARE (9). In this case, the MARE (9) has
at most one MS stabilizing solution, which coincides with
X+.

Lemma 6 has been proved in [4] for the case when[
Q S
S′ R

]
is positive semi-definite. A closer look reveals

that the proof there does not involve any property of the
definiteness and therefore can be applied to the indefinite
case here. The details of the proof are omitted for brevity.

Numerically, X+ can be computed by solving the follow-
ing convex optimization problem:

max tr(X),

subject to constraints (8).

The next issue of interest is to investigate the condition
under which the MARE (9) indeed has an MS stabilizing
solution. See the following lemma.

Lemma 7: The following assertions are equivalent:
(a) Γ ̸= ∅.
(b) The MARE (9) has an MS stabilizing solution X such

that D(X) > 0.
Proof: The implication (a)⇒(b) has been shown in [4]

for the definite case. The proof there does not involve any
property of the definiteness and therefore can be applied to
the indefinite case here. Hence, it suffices to show (b)⇒(a),
as elaborated below.

By Lemma 6, if the MS stabilizing solution exists and
satisfies the required inequality, it must be X+ which is the
maximal solution to the LMIs (8). Consider an open subset
U = {X ∈ Sn|D(X) > 0}. One can see that X+ ∈ U . Let
Ψ : U ×R → Sn be defined by Ψ(X, δ) = R(X)+ δI . It is
clear that (X+, 0) is a solution to

Ψ(X, δ) = 0. (11)

We shall apply the implicit function theorem [18] to the
equation (11) to show that there exists δ̃ > 0 and a smooth
function δ → Xδ : (−δ̃, δ̃) → U such that Ψ(Xδ, δ) = 0.
To this end, one needs to show that ∂Ψ

∂X (X+, 0) is an
isomorphism. Indeed, we have

∂Ψ

∂X
(X+, 0)Y = lim

ϵ→0

Ψ(X++ϵY, 0)−Ψ(X+, 0)

ϵ
= LF+(Y ),

for all Y ∈ Sn, where

F+ = −M−1D(X+)
−1(B′X+ + S′). (12)

It is then clear that ∂Ψ
∂X (X+, 0) is a linear function. In

addition, since F+ is MS stabilizing, it follows from

Lemma 1 (c) that the kernel and range of ∂Ψ
∂X (X+, 0) are

{0} and Sn, respectively. This implies that ∂Ψ
∂X (X+, 0) is an

isomorphism. Also the continuity of (X, δ) → ∂Ψ
∂X (X, δ)

at (X, δ) = (X+, 0) is obvious. We can now apply the
implicit function theorem to deduce that there exists δ̃ > 0
and a smooth function δ → Xδ : (−δ̃, δ̃) → U such that
Ψ(Xδ, δ) = R(Xδ) + δI = 0 for all δ ∈ (−δ̃, δ̃) and
limδ→0 Xδ = X+. As a direct consequence, for an arbitrary
δ ∈ (−δ̃, 0), there holds R(Xδ) = −δI > 0. Since Xδ ∈ U ,
i.e., D(Xδ) > 0, it follows that Xδ ∈ Γ which completes
the proof.

B. Attainability of Indefinite LQ Problem

We first show that the value function V (x0) of the
indefinite stochastic LQ problem is given in terms of the
maximal solution to the LMIs (8).

Theorem 2: If Ω ̸= ∅ under a feasible allocation π, then
the value function is given by V (x0) = x′

0X+x0 for all x0,
where X+ is the maximal solution to the LMIs (8).

Proof: The existence of the maximal solution X+ is
guaranteed by Lemma 6. Moreover, by the same procedure
as in the sufficiency proof of Theorem 1, we can show that
V (x0) ≥ x′

0X+x0.
Now it suffices to show that V (x0) ≤ x′

0X+x0. Assume
that X is an arbitrary element in Ω. It can be easily verified
that X satisfies the LMI[

A′X +XA+Q+ ϵI XB + S
B′X + S′ D(X)

]
> 0,

for an arbitrary ϵ > 0. In view of Lemma 7, the MARE

A′X+XA+Q+ϵI−(XB+S)D(X)−1(B′X+S′) = 0

has a unique MS stabilizing solution Xϵ. The associated MS
stabilizing state feedback gain is given by

Fϵ=−M−1D(Xϵ)
−1(B′Xϵ+S′).

In addition, there holds LFϵ
(Xϵ) =−ΨFϵ

. Then Lemma 4
yields that V (x0) ≤ x′

0Xϵx0. Taking the limit as ϵ → 0, we
have V (x0) ≤ x′

0X+x0 which completes the proof.
The next theorem gives equivalent conditions for the

attainability of the indefinite stochastic LQ problem under
the assumption that Ω ̸= ∅. The optimal controller is also
obtained.

Theorem 3: If Ω ̸= ∅ under a feasible allocation π, the
following assertions are equivalent:
(a) The indefinite LQ problem concerned is attainable.
(b) The MARE (9) has an MS stabilizing solution X .
(c) Γ ̸= ∅.

Moreover, for an attainable problem, the unique optimal
controller is given by u(t) = Fx(t), where F is the
state feedback gain (10) associated with the MS stabilizing
solution X to the MARE (9).

Proof: The equivalence between (b) and (c) has been
shown in Lemma 7. It suffices to show the equivalence
between (a) and (b).

We first prove (a)⇒(b). Since Ω ̸= ∅, the maximal solution
X+ to (8) exists which is also a solution to the MARE (9).



Let u∗(t) be generated by an optimal controller and x∗(t)
be the corresponding plant state. Applying Lemma 3 yields

V (x0)

=J(x0, u
∗(t))

=E

∫ ∞

0

[
x∗(t)

Mu∗(t)

]′[
Q S
S′ (E+W )⊙R

][
x∗(t)

Mu∗(t)

]
dt

=E

∫ ∞

0

[
x∗(t)

Mu∗(t)

]′[
A′X++X+A+Q X+B+S

B′X++S′ D(X+)

][
x∗(t)

Mu∗(t)

]
dt

+ x′
0X+x0.

By completing the squares, we have

V (x0)

=E

∫ ∞

0

(u∗(t)−F+x
∗(t))′MD(X+)M(u∗(t)−F+x

∗(t))dt

+ x′
0X+x0,

where F+ is given by (12). Since V (x0) = x′
0X+x0 and

D(X+) > 0, it follows that u∗(t) is uniquely given by
the feedback form u∗(t) = F+x

∗(t). Therefore, X+ is the
MS stabilizing solution to the MARE (9) as u∗(t) is MS
stabilizing.

Now we prove (b)⇒(a). Assume that the MS stabilizing
solution to (9) exists. In view of Lemma 6, it coincides
with the maximal solution X+ of the LMIs (8). Hence,
u(t) = F+x(t) is MS stabilizing, where F+ is given by (12).
Moreover, there holds LF+(X+) = −ΨF+ . Then Lemma 4
yields that J(x0, u(t)) = x′

0X+x0. Since V (x0) = x′
0X+x0

as shown in Theorem 2, it follows that the indefinite LQ
problem is indeed attainable with the optimal controller given
by u(t) = F+x(t). This completes the proof.

Remark 3: By virtue of the equivalence between the
assertions (a) and (c) in Theorem 3, one can easily check
the attainability of the indefinite LQ optimal control problem
with random input gains by efficient LMI solvers.

VI. CONCLUSION

In this paper, we study the indefinite LQ optimal control
of continuous-time LTI systems with random input gains.
In our setup, each element of the control signal is subject
to independent stochastic multiplicative noise. One main
novelty of this work is that we do not assume that the
input channel capacities are fixed priori. Instead, we put
the indefinite stochastic LQ problem under the framework
of channel/controller co-design which bridges and integrates
the design of the channels and controller. The co-design
is carried out by the twist of channel resource allocation,
i.e., the channel capacities can be allocated among the
input channels by the control designer subject to an overall
capacity constraint. With the channel/controller co-design,
the well-posedness and attainability of the indefinite LQ
problem concerned is nicely addressed.

The well-posedness of the indefinite stochastic LQ optimal
control is more involved than the definite case, as the cost
function may not be bounded from below in general. It is
shown that the well-posedness of the indefinite problem is

determined by the feasibility of the LMI (7). In addition,
under certain mild assumptions, a well-posed problem is
shown to be attainable if and only if the MARE (9) has an
MS stabilizing solution. The attainability is also equivalent to
the strict feasibility of LMIs (8) that can be easily verified by
efficient LMI solvers. For an attainable problem, the optimal
controller is given by a linear state feedback associated with
the MS stabilizing solution to the MARE (9).
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