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Abstract— A key feature of the smart grid is the integration
of a large group of flexible loads which, depending on their
respective natures, are deferrable, and/or interruptible. To fully
exploit such load flexibilities, the system operator attempts to
make decisions towards an efficient coordination of flexible
loads so as to achieve specifically aimed energy consumption
patterns. One desirable consumption pattern, motivated by
reducing generation costs and customer expenditures, is to
make the total load profile as smooth as possible. To this
end, we model the load coordination as an optimal zero-
one matrix completion problem. In particular, we propose
an optimization problem in the majorization order. Although
such problem seems combinatorially hard at first sight, due
to its nice structure, we show that it can be solved with low
complexity. We firstly discuss the existence and uniqueness of
the optimal solution. Then, a sequential algorithm is proposed to
solve the optimization problem efficiently, even in the case of a
large population of loads. Moreover, we address the connection
between our work and the valley-filling behavior presented by
a substantial number of works in the literature.

I. INTRODUCTION

Nowadays, on the supply side, more and more electric
energy is generated from renewable resources, e.g., solar
and wind energy [1]. Also, on the demand side, more and
more flexible loads are integrated to the grid. Depending on
their respective natures, some loads are deferrable, and/or
interruptible, e.g., pool pumps and electric vehicles [2]–
[5]. This raises worldwide interest in how to improve the
performance of the smart grid by fully exploiting such load
flexibilities [6]–[9].

In general, loads in a region can be categorized into two
separate groups. The first group takes up the majority of the
total power consumption, over which the system operator has
little or no control. These are termed as base loads, and can
be estimated under most circumstances. The second group
comprises the flexible loads mentioned in the last paragraph.
The system operator attempts to make decisions towards an
efficient coordination of flexible loads so as to achieve aimed
energy consumption patterns.

A natural question arises – what kind of consumption
pattern is the most desirable? As a starting point, consider the
total load profile, i.e., the sum of the aggregated flexible load
profile and the base load profile. One desirable consumption
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pattern is to make the total load profile as smooth as possible.
The underlying rationale is as follows. Firstly, augmenting
the peak in demand could require additional generation ca-
pacity and ramping capacity [7]. In addition, a more fluctuant
total load profile may result in more power losses, voltage
deviations, and emission costs [10]. Last but not least, the
market generally penalizes peak times with higher prices,
which increases customer expenditures.

In this paper, we consider a group of flexible loads
which can only be charged at a certain fixed rate and its
multiples. The practicability of such an assumption is sup-
ported by [11]. Thus, as explained in later sections, the load
coordination can be mathematically modeled as an optimal
zero-one matrix completion problem. In order to evaluate
the smoothness of the total load profile, we introduce the
majorization relation, which is well-known as a measure of
the fluctuation of a sequence of numbers. Given the base
load, the system operator coordinates the charging processes
of these discrete flexible loads such that the total load profile
is as small as possible in the majorization order.

At first sight, it seems combinatorially hard to solve such
an optimization problem in the majorization order. However,
due to its nice structure, we show that such a problem can
be solved with low complexity. Firstly, we analyze the exis-
tence and uniqueness of the optimal solution, which implies
that the majorization relation is suitable for evaluating the
smoothness of the total load profile. Next, an efficient algo-
rithm is proposed to find the optimal solution. This algorithm
is sequential in terms of flexible loads, and thus friendly to
the augmentation of the number of loads. In detail, when
a new group of flexible loads arrive, the system operator
does not need to rearrange the coordinated charging profiles
of existing loads. Furthermore, we address the connection
between our work and the valley-filling behavior. A number
of works in the literature aim at finding a valley-filling
charging profile. See, for instance, [7], [10], and [12]–[15].
Although a valley-filling charging profile may not necessarily
exist in our model, our results are still consistent with the
so-called valley-filling behavior in the smart grid.

The paper is structured as follows. In Section II, we
introduce some preliminary knowledge and notation. The
model and main problems are elaborated in Section III. In
Section IV, we present the analysis of the corresponding
total load smoothing problem, consisting of the properties of
optimal solutions, the solution algorithm, and the connection
to the valley-filling behavior. After that, some illustrative
numerical examples are presented in Section V. Finally, we
articulate the conclusion and some future work in Section VI.



For fluency and the page limitation, most proofs are omitted
and available from the authors.

II. NOTATION AND PRELIMINARIES

We use a bold italic letter to denote a vector. A set
is denoted by a calligraphic capital letter, except that
we use R and N to refer to real numbers and non-
negative integers respectively. Let ei denote the vector[
0 . . . 0 1 0 . . . 0

]′
, where the only 1 is located

at the ith position. The length of ei can be inferred from the
context. The symbol 0T denotes a vector of length T that
has only zero elements. Let bxc denote the largest integer not
exceeding x ∈ R. The notation 1(·) is the indicator function,
mapping an assertion to {0, 1}.

A. Preliminary on Majorization

The notation regarding majorization varies in the existing
literature, while we stick to the notation from the famous
monograph [16]. Consider a vector x ∈ Rn and rearrange
the elements of x in non-increasing order to obtain a new
vector x↓. Vectors x and x↓ are respectively denoted by

x =
[
x1 x2 · · · xn

]′
,

x↓ =
[
x[1] x[2] · · · x[n]

]′
,

where x[1] ≥ x[2] ≥ · · · ≥ x[n].
Definition 1 ([16]): For two vectors x,y ∈ Rn, we write

x ≺ y, saying that x is majorized by y, if{∑k
i=1 x[i] ≤

∑k
i=1 y[i], k = 1, 2, . . . , n− 1,∑n

i=1 x[i] =
∑n
i=1 y[i].

Note that it suffices to restrict Rn to Nn in our application.
This restriction will be made clear in following sections. We
say that x ∈ Nn is equivalent to y ∈ Nn if x↓ = y↓,
denoted by x ∼ y. As we can see, the majorization relation
is reflexive and transitive over Nn, since{

x ≺ x, (reflexivity)
x ≺ y and y ≺ z ⇒ x ≺ z. (transitivity)

Although x ≺ y and y ≺ x do not imply that x = y,
they do imply that x ∼ y, i.e., x is a rearrangement
of y. As analyzed above, the majorization order is merely
a preorder in Nn, since it is reflexive and transitive but not
antisymmetric.

B. Partition Set – Partially Ordered by Majorization

Concepts in this subsection are mainly adopted from
references [16] and [17], where readers can find more details.

A partition x of a positive integer τ (≤ n) is a vector
only consisting of non-negative integers such that

x ∈ Nn, x = x↓, and
n∑
i=1

xi = τ.

Denote the set of all the partitions of τ by Pτ . Restricted to
the partition set Pτ , the majorization is then a partial ordering
(reflexivity, transitivity and antisymmetry). Thus, we say that
the set Pτ is partially ordered by the majorization relation.

Actually, the majorization order over Pτ is also well-known
as the dominance order, as stated by James in [18].

Before proceeding, it is important to distinguish “a min-
imal element” and “the least element”, especially when we
tackle a partially ordered set (poset). Given a poset (R,≺),
an element x ∈ R is minimal if there exists no other element
y ∈ R such that y ≺ x, while the least element o in (R,≺)
is the unique element of R such that o ≺ y, for every
y ∈ R. In a similar way, we can define a maximal element
and the greatest element. For x,y ∈ R, define inf{x,y} as
the greatest element of {z|z ∈ R, z ≺ x, & z ≺ y}, while
define sup{x,y} as the least element of {z|z ∈ R,x ≺
z, & y ≺ z}. Note that the least/greatest element may not
necessarily exist in a poset.

Interestingly, the minimal element and the least element
coincide in the partition poset (Pτ ,≺). Firstly, the poset
(Pτ ,≺) is a lattice since inf{x,y} and sup{x,y} both exist
in Pτ , for all x,y ∈ Pτ . Secondly, as a lattice with finite
elements, (Pτ ,≺) has the least/greatest element, which is
also the unique minimal/maximal element of Pτ . However,
subsets of (Pτ ,≺) may no longer possess such nice prop-
erties and should be treated with caution. Specifically, there
may be more than one minimal elements and thus the least
element does not exist.

C. Majorization in Zero-one Matrix Completion

Given x ∈ Nm and the integer n no less than the largest
element of x, define the conjugate vector of x by x∗ ∈ Nn,
where

x∗t =

n∑
i=1

1(xi ≥ t).

The following theorem is widely known as the analytic
condition for the existence of a zero-one matrix with given
row sum and column sum vectors, as shown in [6], [16], [19],
and [20]. Furthermore, it is of particular theoretical interest
in characterizing the feasible aggregated charging profiles,
which will be elaborated in the following section.

Theorem 2.1 (Gale-Ryser): There exists an m × n zero-
one matrix with the row sum vector x ∈ Nm and the column
sum vector y ∈ Nn if and only if y ≺ x∗.

III. PROBLEM FORMULATION

The operational period is evenly divided into a sequence of
time slots, indexed by t ∈ T = {1, 2, . . . , T}. Let dt denote
the base load at time slot t. Then, the base load profile is
given by a non-negative integral vector

d =
[
d1 d2 · · · dT

]′
.

The flexible loads are indexed by N = {1, 2, . . . , N}.
The requirement of a flexible load n is specified by two
parameters, the charging demand rn and maximum charging
rate r̄n. Let rn,t denote the charging rate of the load n at
time slot t. Due to the assumption of feasible loads, both rn,t
and rn are integral. Thus, a feasible charging profile for the



load n is a charging profile rn =
[
rn,1 rn,2 . . . rn,T

]′
,

which satisfies the following constraints:
T∑
t=1

rn,t = rn,

0 ≤ rn,t ≤ r̄n, rn,t ∈ N, t ∈ T .

Denote the aggregated charging profile h by

h =
[
h1 h2 . . . hT

]′
,

where

ht =

N∑
n=1

rn,t, t ∈ T .

Naturally, an aggregated charging profile is feasible if it is
the summation of N feasible charging profiles corresponding
to the N loads. Let H denote the set of all the feasible
aggregated charging profiles. The total load profile is the
summation of the base load profile and the aggregated
charging profile, denoted by h+d. Let τ denote the amount
of the total load; i.e.,

τ =

T∑
t=1

(ht + dt).

Considering the base load profile d and the charging re-
quirements (rn, r̄n) of the N loads, the coordinator schedules
the feasible charging profiles such that the total load profile is
as smooth as possible. Mathematically, the total load profile
smoothing problem (TLPS) is formulated as follows:

min
≺

h + d

subject to h ∈ H.
(1)

As explained later in Remark 1, without loss of generality,
we can assume that r̄n = 1,∀n ∈ N . As a result, all the
demand requirements can be specified by the demand profile

r =
[
r1 r2 . . . rN

]′
.

Furthermore, the TLPS problem (1) can be reformulated
as follows:

min
≺

h + d

subject to h =

N∑
n=1

rn, rn =

T∑
t=1

rn,t,

rn,t ∈ {0, 1}, n ∈ N , t ∈ T .

(2)

Alert readers may find that the above problem is nothing
but an optimal zero-one matrix completion problem. Specifi-
cally, given the row sum vector r, complete a zero-one matrix
such that the sum of the column sum vector h and the base
load profile d is as small as possible under the majorization
order. As a result, along with the Gale-Ryser theorem, we
can substitute h ≺ r∗ for the constraints in (2). Finally,
the TLPS problem (1) leads to the following optimization
problem in the majorization order:

min
≺

h + d

subject to h ≺ r∗.
(3)

Now, we can further see why it is reasonable to coordinate
flexible loads via optimization in the majorization order. It
is not only because the smoothness of the objective variable
can be evaluated by the majorization order, but also because
the constraint of the TLPS problem can be characterized
by an inequality in the majorization order. As a whole, the
optimization problem (3) is of essentially theoretical interest
to the TLPS problem (1).

Remark 1: A consumer n specified by (rn, r̄n) can be
theoretically regarded as the combination of r̄n sub loads.
Specifically, the first δ of the sub loads are all specified by
(brn/r̄nc+1, 1) and the remaining (r̄n−δ) sub loads are all
specified by (brn/r̄nc, 1), where rn = brn/r̄nc∗ r̄n+δ. The
equivalence is explicit and will be illustrated by numerical
examples in Section V.

IV. ANALYSIS OF TLPS PROBLEM

The section consists of three parts. Firstly, we will show
that the optimal solutions to the TLPS problem have a
nice property and thus the majorization order is suitable for
evaluating the smoothness of the total load profile. Then, an
algorithm is put forward to find the optimum of the TLPS
problem. Finally, we connect our results to the valley filling,
which has been widely studied in existing literature.

A. Existence of Solution

Before proceeding, we define

S = {(h + d)↓ | h ∈ H}.

For simplicity, the total load profile h+d will also be de-
noted by s. In the following, we will exploit the poset (S,≺).
Obviously, by properly adding some possible zeros behind
the vectors, we can write S ⊆ Pτ for convenience. Just like
(Pτ ,≺), the poset (S,≺) also has a nice structure, as shown
in the following theorem.

Theorem 4.1: The least element exists in (S,≺).
Generally, we can see that there are no minimals in {(h+

d) | h ∈ H}, so, a fortiori, neither is the least element.
However, the above theorem says that a unique minimal (the
least element) exists in S = {(h+ d)↓ | h ∈ H}. This least
element corresponds to all the optimal total load profiles with
respect to the demands r and the base load d. That is to
say, all such total load profiles possess the same elements
and thus certainly share the same fluctuation level. Strictly
speaking, we should rewrite the objective function in the
TLPS problem as min≺,S(h + d) to make the optimization
problem better defined. Without confusion, we can omit S
in the context for simplicity. As a whole, the essence of the
TLPS problem is to find a feasible total load profile s such
that s↓ is the least element of S .

B. Solution Algorithm

As an optimal zero-one matrix completion problem, the
TLPS problem is combinatorially hard at first sight. A natural
way to solve a combinatorial optimization problem is to
search the optimum in the feasible set. Although the superset
Pτ of S has a nice structure for searching, such brute-force



search is not desirable. Besides, we still need to take extra
efforts to find the charging profile of each load after attaining
the least element. Thus, we pursue a more efficient algorithm,
which can help us find a smoothest total load profile, together
with corresponding charging profiles.

Concerning the zero-one matrix completion problem with
given row and column sum vectors, the well-known Ryser’s
algorithm works efficiently. Interested readers can find details
in [20]–[22]. As for the TLPS problem, which is aimed at
completing a zero-one matrix with a given row sum vector
such that the column sum vector is the desired one, we
propose an algorithm as efficient as the Ryser’s algorithm.
Shown below as Algorithm 1, the proposed algorithm is
iterative and has at most N iterations. The complexity of
each iteration is uniformly O(T ), and thus, the complexity
of the total algorithm is O(T ·N). The complexity of Ryser’s
algorithm is also O(T · N), to find a zero-one matrix with
the column sum vector h and row sum vector r.

As shown in this paper, the designed algorithm solves the
problem in a sequential way. Thus, one of our concerns is
whether the output total load profile s̄ will be changed if
the elements in the vector r are rearranged. The following
proposition gives the answer.

Proposition 1: Rearranging elements of the input r, the
output total load profile s̄ remains equivalent.

The above invariance property plays a vital role in veri-
fying the optimality of Algorithm 1. The optimality means
that the least element is given by s̄↓, where s̄ is the total
load profile generated by Algorithm 1.

Another interesting observation is that if a new group of
loads arrive after we have coordinated N loads by Algo-
rithm 1, we can still achieve the optimum without changing
the charging profiles of existing loads. This observation
implies that our algorithm can still work when the number
of flexible loads N is extremely large. When the storage
space of a processor is limited, the flexible loads can be
coordinated in batches and we can still achieve the optimum
in the presence of all the flexible loads.

On the other hand, in our current setting, the system
operator has full control over the charging processes of

Algorithm 1 Total Load Smoothing Algorithm
Input: The base load profile d and the demand profile r,

where the lengths of d and r are respectively T and N .
Output: The total load profile s̄ and a group of feasible

charging profiles rn, n ∈ N .
1: Initialization: i = N ; rn = 0T , n ∈ N ; s̄ = d;
2: Identify position indices i1, i2, . . . , iri corresponding to

the ri smallest elements of s̄. In case of ties, randomly
pick them such that only ri positions are identified.
Update the charging profile ri by adding one to elements
in positions indexed by the aforementioned indices;

3: Update the total supply profile: s̄ = s̄ + ri; i = i− 1;
4: If i achieves zero, then the algorithm terminates with

outputs; Otherwise, go to step 2.

flexible loads. Based on Algorithm 1, the following scenario
can heighten the customer engagement without reducing the
optimal performance in principle. Denote the price function
by f(·), which is a strictly increasing function. The original
price profile is given by

p =
[
p1 p2 . . . pT

]′
,

with pt = f(dt), t ∈ T . The flexible loads are served by
the first-come first-served rule. Once a new load specified
by (rn, 1) arrives, the system operator shows it the current
price profile p. Then, the load chooses a feasible charging
profile rn such that the cost

∑T
t=1 ptrn,t is minimum, and

reports it back. The system operator receives the information,
successively updates the total load profile s and the price
profile p by st = st + rn,t and pt = f(st), t ∈ T , and
then waits for another load. By Proposition 1, for the same
group of flexible loads and the same base load, the above
process will generate an equivalent total load profile to that
from Algorithm 1.

C. Valley-filling Behavior

In this section, we intend to relate the TLPS problem to
an interesting concept in the smart grid – valley filling.

A valley-filling aggregated charging profile hvf is defined
as follows [7]:

hvft = max{0, v − dt}, (4)

where v is a constant and hvf =
[
hvf1 hvf2 . . . hvfT

]′
.

In some models, a valley-filling profile does not necessar-
ily exist in general, as shown in [14], and neither does the
model in this paper. Firstly, there may not exist an integer v
such that τ =

∑T
t=1 h

vf
t . If such a v exists, it can be found

by Algorithm 2. Otherwise, Algorithm 2 will go to an endless
loop. Secondly, even if such an integral v exists, the resulted
hvf may not belong to H; i.e., hvf ⊀ r∗.

If Algorithm 1 generates a valley-filling aggregated charg-
ing profile h, then it is exactly the one obtained by some
v and formula (4). Moreover, the corresponding v can be
obtained by Algorithm 2. Thus, our concern is whether the
aggregated charging profile h resulted by Algorithm 1 is
valley-filling, if we can actually achieve the valley-filling be-
havior by coordinating the given flexible loads appropriately.
The answer is positive. When a valley-filling aggregated
charging profile hvf does exist, the resulted total load profile
(hvf +d) also belongs to the feasible set {(h+d) | h ∈ H}.

Algorithm 2 Finding Integral Constant v
Input: The base load profile d and the total demand τ .
Output: Integral constant v.

1: Initialization: hvf = 0T , v = 0, v1 = 0, v2 = bτ/T c +
max{dt, t ∈ T }+ 1;

2: v = b(v1 + v2)/2c; Update hvf by v and formula (4);
τ1 =

∑T
t=1 h

vf
t ;

3: If τ1 > τ , then let v2 = v and go to step 2; Otherwise,
if τ1 < τ , then let v1 = v and go to step 2; Otherwise,
if τ1 = τ , then the algorithm terminates with v.



In the following, we will show that (hvf + d) is the only
element in {(h + d) | h ∈ H}, which corresponds to the
least element of {(h + d)↓ | h ∈ H}. In other words, hvf

can be obtained by Algorithm 1; i.e.,

hvf =

N∑
i=1

ri,

where ri, i ∈ N are the outputs of Algorithm 1.
Partition the elements of (hvf + d) into two parts. The

elements of the first part consist of those indexed by t with
(dt+h

vf
t ) > v, while the remaining elements of (hvf+d) are

all v. It is obvious that we cannot obtain a different vector ŝ
by rearranging the elements of (hvf + d) such that (ŝ− d)
is elementwise non-negative. We claim that (hvf + d)↓ is
indeed the least element of S. Since the total load profile
s̄ generated by Algorithm 1 also corresponds to the least
element of {(h + d)↓ | h ∈ H}, i.e., s̄↓ = (hvf + d)↓, we
have s̄ = (hvf + d).

The above analysis concludes that Algorithm 1 can check
whether a valley-filling profile exists. A valley-filling profile
exists if and only if the profile generated by Algorithm 1
is valley-filling. An alternative way to check the existence
of a valley-filling profile is as follows. Firstly, the integral
constant v can be calculated by Algorithm 2 and then we
obtain hvf by the formula (4). According to the Gale-Ryser
theorem, we say that there exists a valley-filling profile if
and only if hvf ≺ r∗.

V. NUMERICAL EXAMPLES

In this section, we will present some numerical examples
to interpret partial concepts and algorithms discussed in
previous sections.

Example 1 illustrates the decomposition of loads with no
single maximum charging rates, as shown in Remark 1.

Example 1: Let T = 4. Consider a flexible load n, whose
requirement is specified by the charging demand rn = 7 and
the maximum charging rate r̄n = 3. Two feasible charging
profiles are

rn1 =
[
3 3 1 0

]′
and rn2 =

[
1 1 2 3

]′
.

Since rn = 2 ∗ r̄n + 1, this load can be regarded as the
combination of three flexible sub loads, whose maximum
charging rates are all 1s. Herein, the first sub load has the
charging demand 3, while the other two sub loads require 2
units each.

As a result, the feasible charging profile rn1 can only be
decomposed into the three zero-one charging profiles:[

1 1 1 0
]′
,
[
1 1 0 0

]′
, and

[
1 1 0 0

]′
.

On the other hand, the feasible charging profile rn2 can
be recovered by several possible triples of zero-one charging
profiles, e.g.,[

1 0 1 1
]′
,
[
0 0 1 1

]′
, and

[
0 1 0 1

]′
;[

1 1 0 1
]′
,
[
0 0 1 1

]′
, and

[
0 0 1 1

]′
.

However, the following triple is not consistent with the
equivalent decomposition of load n:[

1 1 1 1
]′
,
[
0 0 1 1

]′
, and

[
0 0 0 1

]′
,

though the combination of each triple is still a feasible
charging profile for the load n.

The next example recovers the process of Algorithm 1 and
verifies Proposition 1 numerically.

Example 2: The base load profile and the demand profile
are respectively given by[

7 1 2 5 2
]′

and
[
3 2 1 4

]′
.

Assume all the loads take 1 as the maximum charging rate.
The process of Algorithm 1 is recovered in Table I. On the
other hand, if the input is the reversal of the original demand
profile, the corresponding process is presented in Table II.

As shown in the Table I and II, the output total load
profiles are equivalent, for the two different processes.

3 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗
s̄ 7 1 2 5 2

d 7 1 2 5 2

=⇒

3 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
s̄ 7 2 3 6 3

4 0 1 1 1 1
d 7 1 2 5 2

=⇒

3 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
s̄ 7 3 3 6 3

1 0 1 0 0 0
4 0 1 1 1 1
d 7 1 2 5 2

⇒

3 ∗ ∗ ∗ ∗ ∗
s̄ 7 3 4 6 4

2 0 0 1 0 1
1 0 1 0 0 0
4 0 1 1 1 1
d 7 1 2 5 2

=⇒

s̄ 7 4 5 6 5

3 0 1 1 0 1
2 0 0 1 0 1
1 0 1 0 0 0
4 0 1 1 1 1
d 7 1 2 5 2

TABLE I

4 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
s̄ 7 1 2 5 2

d 7 1 2 5 2

=⇒

4 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
s̄ 7 2 3 5 3

3 0 1 1 0 1
d 7 1 2 5 2

=⇒

4 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
s̄ 7 3 4 5 3

2 0 1 1 0 0
3 0 1 1 0 1
d 7 1 2 5 2

⇒

4 ∗ ∗ ∗ ∗ ∗
s̄ 7 4 4 5 3

1 0 1 0 0 0
2 0 1 1 0 0
3 0 1 1 0 1
d 7 1 2 5 2

=⇒

s̄ 7 5 5 6 4

4 0 1 1 1 1
1 0 1 0 0 0
2 0 1 1 0 0
3 0 1 1 0 1
d 7 1 2 5 2

TABLE II

Example 3 presents the connection between our results and
the valley-filling behavior. In general, a valley-filling profile
is not feasible. As long as it is feasible, it can be achieved
by Algorithm 1.

Example 3: The base load profile and the demand profile
are those given in Example 2, and the conjugate of the
demand supply is

[
4 3 2 1

]′
.

If a valley-filling aggregated charging profile exists, it
should be

[
0 4 3 0 3

]′
, where ht = max{0, v − dt}



and v = 5. However, such an aggregated charging profile is
not feasible, since[

0 4 3 0 3
]′ � [4 3 2 1 0

]′
.

If the demand profile is changed to
[
2 2 3 3

]′
, the

possible valley-filling aggregated profile remains the same.
Moreover, the majorization condition is satisfied. The con-
structing process is given in Table III.

2 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
s̄ 7 1 2 5 2

d 7 1 2 5 2

=⇒

2 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
s̄ 7 2 3 5 3

3 0 1 1 0 1
d 7 1 2 5 2

=⇒

2 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
s̄ 7 3 4 5 4

3 0 1 1 0 1
3 0 1 1 0 1
d 7 1 2 5 2

⇒

4 ∗ ∗ ∗ ∗ ∗
s̄ 7 4 5 5 4

2 0 1 1 0 0
3 0 1 1 0 1
3 0 1 1 0 1
d 7 1 2 5 2

=⇒

s̄ 7 5 5 5 5

2 0 1 0 0 1
2 0 1 1 0 0
3 0 1 1 0 1
3 0 1 1 0 1
d 7 1 2 5 2

TABLE III

VI. CONCLUSION AND FUTURE WORK

In this paper, a total load profile smoothing problem (1) is
considered. Given the base load profile, we intend to smooth
the total load profile in terms of majorization by way of
coordination of a group of flexible loads. Such problem can
be reformulated as an optimal matrix completion problem (2)
and further an optimization problem in the majorization
order (3). We show that, for such a minimization problem,
the least element exists in the corresponding partially ordered
set. An efficient algorithm can help us find the optimal total
load profile together with the corresponding charging profile
of each flexible load. As a sequential algorithm, it can still
work when the number of flexible loads is extremely large.
Moreover, this algorithm can help us check whether a valley-
filling profile exists. If it does, the outputs of the algorithm
will present the valley-filling behavior.

In the future, we plan to solve the TLPS problem in
the presence of heterogeneous flexible loads. Concretely
speaking, different loads may have different arrival times and
different deadlines. Under such constraints, a simple solution
algorithm will no longer work in general. On the other hand,
the majorization relation gives us a hint to treat the total
loads of several time slots as a whole. As often observed in
real life, the price of electricity may be determined by not
only the total load of the current time slot but also the total

loads of previous and future time slots. We intend to find the
theoretical implications by way of majorization theory.
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