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Abstract: The supply/demand balance problem plays a pivotal role in the electricity grid,
especially when an increasing proportion of power is generated from renewable resources.
Enormous supply/demand models have been put forward in order to handle the balance problem
in the smart grid, in the presence of high renewable penetration. This has brought an awareness
that the flexibilities in the demand can be exploited to alleviate the burden on the supply.
In view of this, we apply and study differentiated energy services, which distinguish demands
in terms of their available flexibilities. As a starting point, we concentrate on two problems
regarding adequacy. On the one hand, we find both numerical and analytical ways to check the
adequacy of a supply. On the other hand, we characterize the adequacy gap in the case of an
inadequate supply.

Keywords: Smart grids, supply/demand balance, demand response, (0, 1)-matrix completion,
flow network theory

1. INTRODUCTION

For the purpose of sustainable development (Azapagic
and Perdan, 2011), more and more renewable resources,
such as solar and wind energy, are being exploited to
generate electricity. In spite of the alluring advantages of
renewables, the inherent uncertainty and intermittency of
renewable energy have inevitably posed great challenges to
the establishment and maintenance of a sustainable power
system. Particularly, this raises worldwide concerns about
how to balance the supply and demand in consideration of
the deeper penetration of renewables.

A natural approach is to compensate for the fluctuation in
the demand by way of reserve generations. Such supply
side approach has already been put into practice and
also proven successful when the majority of power is still
generated from traditional resources such as fossil fuels.
However, due to the increasing amount of renewable gen-
erations, the supply side approach requires considerable
quantities of reserves at the expense of both economical
and environmental benefits. See, for instance, Helman
et al. (2010), Ortega-Vazquez and Kirschen (2010), and
Halamay et al. (2011).

With the growing development of the smart grid, the
demand side approach, widely known as demand response,
has raised the growing interest of engineers and scientists.
It focuses on exploiting the flexibilities in demand to com-
pensate for the undesirable attributes of renewable energy.
Researchers are also more aware of the various flexibilities
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residing in different loads. Following are some typical
examples of flexible loads: electrical vehicles, thermostati-
cally controlled loads, residential pool pumps, commercial
HVAC (heating, ventilation and air conditioning) systems
and other smart appliances. Successful attempts at such
loads have been made in Tan and Varaiya (1993), Clement-
Nyns et al. (2010), Galus et al. (2010), Meyn et al. (2013),
and Hao and Chen (2014), to name just a few. Loads may
be deferable, intermittent or modulated depending on their
respective natures and such flexibilities can make room
for the volatilities of renewables. The GRIP (grids with
intelligent periphery), proposed in Bakken et al. (2011),
also provides a nice framework to carry out innovations
regarding the demand response.

Along the line of demand approach, a number of creative
supply/demand models have been proposed. Among them,
we are particularly interested in the differentiated energy
services, as described by Nayyar et al. (2016) and Chen
et al. (2015). Generally speaking, the electricity is no
longer treated as a homogenous product with a single
unit price, but a set of energy services differentiated by
levels of flexibility. As the name indicates, the duration-
differentiated energy services in Nayyar et al. (2016) are
differentiated by their durations only, while the duration-
deadline jointly differentiated energy services in Chen et al.
(2015) are jointly differentiated by both the duration
requirements and deadlines. In both cases, the loads are
assumed to be indifferent to the actual delivery time.
Moreover, the power delivery rate is assumed to be a
certain constant, rather than an interval of continuous
real numbers. This is reasonable especially for some smart
loads in smart grid, as shown in Yilmaz and Krein (2013).
In such services, a day-ahead market is considered. Based



on estimated supply and accumulated requirements from
loads, the nominal provider schedules power delivery and
makes deals with other electricity providers in advance.

Two significant issues have been discussed in both afore-
mentioned works on differentiated energy services. One
is the adequacy of supply, and the other is the market
implementation. In this paper, we focus on the first issue
with a further complicated yet more practical setup: the
differentiated energy services with multiple arrival times
and multiple deadlines. To start with, we establish the
necessary and sufficient conditions under which the supply
can satisfy the requirements from a set of loads. Finding
such an adequacy condition is equivalent to characterizing
the existence of a constrained (0, 1)-matrix, which is
closely connected with a flow network. We show that the
polynomial algorithms for maximal flow can be applied
to check the adequacy of the supply and simultaneously
generate a feasible allocation when the supply is indeed
adequate. In addition, a closed-form condition is given
in terms of the nonnegativity of a structure tensor. The
analytical condition physically implies that the demand
tails should always be dominated by the supply tails. This
coincides with the common intuition that the demand
should be dominated by adequate supply. In case the
supply is inadequate, the adequacy gap will be derived
from the difference between the total demand and the
value of the maximal flow, or equivalently, the absolute
value of the minimum element of the structure tensor. A
simple algorithm is presented to find a minimal feasible
purchase which makes the total supply adequate.

The rest of the paper is organized as follows. In Section 2,
we introduce the supply/demand model studied in this
paper and formulate the main problems. In Section 3, the
main results are presented, with reference to both the
adequacy condition and the adequacy gap. Finally, we
conclude the paper and present some promising future
extensions in Section 4. The notation used in this paper
is mostly standard and will be made clear as we proceed.
We use O to denote a matrix with all elements equal to
zero, and E to denote a matrix with all elements equal to
one. Given a number a, we denote a+ = max{a, 0}. For an
assertion A, 1(A) is assigned the value 1 if A is true, and
0 otherwise.

2. PROBLEM FORMULATION

In this paper, we lay emphasis on two issues in differ-
entiated energy services with multiple arrival times and
deadlines. One is under what condition the energy supply
is qualified to serve all the demands (adequacy condition),
while the other is the minimum amount of additional
purchase in case of an insufficient supply (adequacy gap).
To resolve these issues, we firstly demonstrate the sup-
ply/demand model we rely on in this paper.

2.1 Differentiated Energy Services: Multiple Arrival Times
and Multiple Deadlines

The operational horizon is divided into T consecutive time
slots. At each time slot t, the available supply is denoted
by ht. In addition to the two special time instances 0 and

Fig. 1. An illustration of a service time specified by both
the arrival time and the deadline

Fig. 2. Four qualified delivery results

T at both ends, the service provider points out (τ + 1)
specified time instances, namely,

(0 = T0) < T1 < T2 < · · · < Tτ−1 < (T = Tτ ).

The demand arises from N consumers/loads, indexed by
i = 1, 2, . . . , N . The delivery rate from the supply to a
load is constant, i.e., c units per time slot. Without loss
of generality, let c = 1, which simply means the supply
can allocate one or zero unit of power to a load at a time
slot. Load i is characterized by a duration ri and a service
period specified by (ai, di). This means that load i requires
to be delivered ri units within the time interval from the
start of the (Tai + 1)th time slot to the end of the Tdith
time slot. In other words, the supply has to deliver 1 unit
of power to load i for ri time slots within the respective
service time. As shown in Fig. 1, over the T = 9 time slots
in total, the specified time instances are indexed by 0, 1, 7,
and 9, while the load cannot be served at the first, eighth
or ninth time slots. Note that the load is indifferent to
the actual delivery time provided the duration and service
time requirements are satisfied.

We give four qualified power delivery results in Fig. 2, for
a load i with ri = 3 and the service time specified by
Fig. 1. They are four different forms of the same service,
among many other possible forms. Now, we can readily
figure out why such services are called the differentiated
energy services with multiple arrival times and deadlines,
as each service is differentiated by the duration, the arrival
time, and the deadline. When all the service times are
presented by (0, di), the case reduces to the duration-
deadline jointly differentiated energy services in Chen et al.
(2015). If further, all the loads have the same service time,
specified by (0, τ), then the case reduces to the duration-
differentiated energy services in Nayyar et al. (2016).
Remark 1. In the context, we assume that a series of time
instances are specified by the nominal service provider in
advance and consumers can only choose the service time
determined by two of them. This is an operator-friendly
scheme. Nevertheless, there is an alternative scheme, which
seems more attractive to consumers. In this scheme, every
consumer can choose a service time specified by any two
time slots among the total T time slots. Then, those
chosen as the arrival time or deadline are regarded as the
specified time instances mentioned above. We claim that



both schemes are equivalent up to our assumptions and
results in this paper, though they have their respective
strengths and weaknesses in other applications.

2.2 Mathematical Expressions for the Adequacy Condition
and Adequacy Gap

Denote the supply profile and the demand profile by

h = [h1 h2 · · · hT ]
′
,

r = [r1 r2 · · · rN ]
′
,

respectively. Thus, the total supply and total demand are
respectively denoted by

T∑
t=1

ht and
N∑
i=1

ri.

A supply profile h is adequate for a demand profile r under
required service times if there exists a power allocation
such that all the load requirements are satisfied. If further,
the supply has no surplus after the appropriate allocation,
then h is exactly adequate. We use an N × T pattern
matrix F defined as follows to represent the constraints
due to the different arrival times and deadlines. A position
(i, t) is admissible if Tai + 1 ≤ t ≤ Tdi . Otherwise, it
is a forbidden position. The pattern matrix has 1’s on
all the admissible positions and 0’s on all the forbidden
positions. Physically, these admissible positions of the ith
row denote when the power can be delivered to load i. It
is easily verifiable that finding the adequacy condition is
equivalent to characterizing the existence of a (0, 1)-matrix
A satisfying the following constraints:

N∑
i=1

A(i, t) ≤ ht, ∀t = 1, 2, . . . , T ; (1)

T∑
t=1

A(i, t) = ri, ∀i = 1, 2, . . . , N ; (2)

O ≤ A ≤ F, (3)

The column sum constraints (1) are associated with the
restricted supplies; the row sum constraints (2) correspond
to the duration requirements of the loads; the required
service times are consistent with the pattern matrix F .
The pattern matrix is of a staircase pattern when it is
restricted to the duration-deadline jointly differentiated
energy services. Moreover, when F = E, it reduces to
the case of the duration-differentiated energy services. We
denote the matrix class consisting of all such matrices by
A (h, r, F ). The claim below directly follows from the one-
to-one correspondence between a feasible allocation and a
matrix in A (h, r, F ).
Claim 2. The set A (h, r, F ) is nonempty if and only if
the supply profile h is adequate.

The following example aims at illustrating the relationship
between the differentiated energy services and zero-one
matrices. There are four different loads and their service
times are shown in Fig. 3. A feasible power allocation is
also given. The corresponding supply profile, the demand
profile, the pattern matrix, and the equivalent matrix are
given as follows:

h = [1 1 1 2 2 1 2 1 1]
′
,

r = [1 2 5 4]
′
,

F =

0 0 1 1 1 1 1 0 0
0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1


A =

0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
1 1 1 0 1 0 1 0 0
0 0 0 0 0 1 1 1 1



Fig. 3. An illustrative example

So far, we have reshaped the adequacy problem into
an existence problem of a (0, 1)-matrix constrained by
(1), (2), and (3). Researchers have paid close attention
to the (0, 1)-matrix completion problem over the past
century. See, for instance, Ryser (1957), Gale (1957),
Mirsky (1971), Brualdi (1980), Anstee (1982), Anstee
(1983), Brualdi and Dahl (2003), Marshall et al. (2011),
and Chen et al. (2016). Apart from being a mathematical
problem, it also has wide applications in engineering and
social fields, for example, in the discrete tomography
(Herman and Kuba, 2012), hard real-time computing
systems (Buttazzo, 2011), and electoral systems (Lari
et al., 2014). Quite a few elegant results have been obtained
when the pattern matrix F is of certain special forms.
Particularly, the Gale-Ryser theorem (Ryser 1957 and
Gale 1957) solves the problem when F = E, which
is exactly the majorization condition for the duration-
differentiated energy services in Nayyar et al. (2016). The
results in Chen et al. (2016), where F is of a prescribed
staircase pattern, lay a foundation for the study of the
duration-deadline jointly differentiated energy services in
Chen et al. (2015).

A follow-up question arises from an inadequate supply. A
supplementary purchase profile p is feasible if it renders
the total supply profile p+h adequate. The adequacy gap
g stands for the minimum supplementary purchase such
that the total supply profile is adequate. Mathematically,
finding the adequacy gap amounts to solving the following
optimization problem:

min
p

T∑
t=1

pt,

subject to h + p being adequate,

(4)

where p = [p1 p2 · · · pT ]
′ is an integral vector, denot-

ing the supplemental purchase over T time slots. The
adequacy gap problem is one of the most fundamental
problems that relate the differentiated energy services
to the traditional electricity market. When the nominal



provider in this paper faces a time-invariant unit purchas-
ing price from the traditional market, the solution to the
optimization problem (4) also minimizes the purchasing
cost in order that the supply can provide qualified services
for the given loads.

We assume that the information about the supply and
demand are available offline. Therefore, the solvability
of the above two problems will not be changed by per-
mutating rows and/or columns of the pattern matrix
F and modifying the supply and/or demand profiles
correspondingly. Without loss of generality, the following
assumption runs through this paper:
hTi+1 ≥ hTi+2 ≥ · · · ≥ hTi+1 , for i = 0, 1, . . . , τ − 1. (5)

3. MAIN RESULTS

In this section, we firstly propose two necessary and
sufficient conditions with respect to adequacy. One is
given numerically, while the other is in analytic form.
Then, based on the adequacy conditions, the adequacy gap
problem is solved correspondingly. The ideas of proofs are
sketched and the details can be found in the longer version
of the paper available from the authors.

3.1 Adequacy Condition

In the last section, we transformed the adequacy problem
into an existence problem of a (0, 1)-matrix constrained by
(1), (2), and (3). Expanding on the existing works in the
literature, we take one step forward to exploit the problem
when the pattern matrix F is designated by the N loads
with multiple arrival times and multiple deadlines. First
of all, relax the constraint (2) to

T∑
t=1

A(i, t) ≤ ri, ∀i = 1, 2, . . . , N. (6)

Then denote the matrix class with all the (0, 1)-matrices
satisfying constraints (1), (3), and (6) by A≤(h, r, F ).
Before proceeding, we claim that we can find a matrix
in A≤(h, r, F ) with the maximal number (say |f̄ |) of 1’s
in polynomial time.
Proposition 3. The supply profile h is adequate if and only
if |f̄ | =

∑N
i=1 ri. If further,

∑N
i=1 ri =

∑T
t=1 ht, the supply

is exactly adequate.

The key of the proof lies in the construction of an s − t
flow network, generated by the supply profile, the demand
profile, and the pattern matrix. There exists a one-to-
one correspondence between matrices in A≤(h, r, F ) and
feasible integral flows in the flow network. It can be
shown that the well-known Ford-Fulkerson algorithm Ford
and Fulkerson (1956) and/or the Edmonds-Karp algorith-
m Edmonds and Karp (1972) can help find a maximal
integral flow in such a flow network. Let |||F |||1 =∑N
i=1

∑T
t=1 |F (i, t)|. Then, the corresponding complexities

of the above two algorithms under our notation are
respectively given by

O
(
|||F |||1|f̄ |

)
and O

(
(N + T )|||F |||21

)
.

As a result, we can check the adequacy of the supply
numerically. Moreover, if the supply is indeed adequate,
it also generates a feasible allocation.

Fig. 4. Visual interpretation of a 4th-order structure tensor
W (h, r, F )

Nevertheless, for the purpose of further analysis, like mar-
ket implementation, an analytical necessary and sufficient
condition is also desirable. Inheriting the merits of the
method in Chen et al. (2016), we define an associated τth
order tensor W (h, r, F ) of dimension (T1 +1)× (T2−T1 +
1)× · · · × (Tτ − Tτ−1 + 1) as follows:

Wk1k2···kτ (h, r, F )=

T1∑
t>k1

ht +

T2∑
t>T1+k2

ht + · · ·+
Tτ∑

t>Tτ−1+kτ

ht−

N∑
i=1

[ri − (kai+1 + kai+2 + · · ·+ kdi)]
+, (7)

where 0 ≤k1 ≤T1, 0 ≤k2≤ T2−T1, · · · , 0 ≤kτ ≤T−Tτ−1.
We call W (h, r, F ) a structure tensor, since it is merely
determined by the structural information (h, r, F ). We say
that W (h, r, F ) is nonnegative, if its every element is no
less than zero, denoted by W (h, r, F ) ≥ 0.

Now, it is ready for us to elaborate our most significant
result in this paper.
Theorem 4. The supply profile h is adequate if and only if
W (h, r, F ) ≥ 0. If further,

∑N
i=1 ri =

∑T
t=1 ht, the supply

is exactly adequate.

Alert readers may find that though the expression of the
structure tensor may seem complicated, it indeed has
regularity of its own. Hereinafter, we will unravel the
underlying physical interpretations.

Fixing k1, k2, . . . , kτ , we divide expression (7) into two
parts by the minus sign. The first part is the summation
of terms

Tm+1∑
t>Tm+km+1

ht,

form = 0, 1, . . . , τ−1. We call this the supply tail, whereas
the second part is the summation of

[ri − (kai+1 + kai+2 + · · ·+ kdi)]
+,

for i = 1, 2, . . . , N , which is called the demand tail. Take
Fig. 4 as an illustration, where τ = 4. On the one hand,
aggregating the colored part horizon, we obtain the supply
tail. On the other hand, accumulating the colored part
over the load index, we get the demand tail. As can be
readily seen, the nonnegativity of W (h, r, F ) is nothing
but the fact that the demand tail is dominated by the
supply tail, for 0 ≤ k1 ≤ T1, 0 ≤ k2 ≤ T2 − T1, · · · ,
and 0 ≤ kτ ≤ T − Tτ−1. Informally speaking, the energy
dominance in tails implies the adequacy of the supply, and
vice versa.



It appears that our adequacy condition stated in Theo-
rem 4 is consistent with that shown in Nayyar et al. (2016)
and Chen et al. (2015).

3.2 Adequacy Gap

So far, we are able to check whether a supply profile h is
adequate or not. In the event of an inadequate supply, the
next step is to find the adequacy gap.
Theorem 5. If the supply profile h is inadequate, then the
adequacy gap g is given by

(1)
∑N
i=1 ri − |f̄ |,

(2) or equivalently |mink1,k2,··· ,kτ Wk1k2···kτ (h, r, F )| .

Although the adequacy gap is determined once the struc-
tural information (h, r, F ) is given, the feasible supple-
mentary purchase profile p which achieves this minimum
may not be unique. For example, consider h = [1 1 1]

′,
r = [2 2]

′, and F = E. Apparently, the current supply
profile is inadequate and there are three feasible supple-
mentary purchase profiles, namely, [0 0 1]

′
, [0 1 0]

′, and
[1 0 0]

′. The following algorithm can help us find a feasible
supplementary purchase profile.
Algorithm 1. Find a minimal feasible purchase profile.

Input: the structural information triple (h, r, F ).

(1) Initialization: t=1; p = O of order N × 1; fdo =

|f̄ | −
∑N
i=1 ri or the minimal element of the structure

tensor W in terms of (p + h, r, F ). If fdo = 0, then
output p; otherwise, go to next step.

(2) pt = pt+1; fd = |f̄ |−
∑N
i=1 ri or the minimal element

of the structure tensor W in terms of (p + h, r, F ).
Go to next step.

(3) Checker: If fd = 0, then output p. If fd 6= 0 and
fd > fdo , then let fdo = fd and go to step (2);
otherwise (i.e., fd = fdo 6= 0), pt = pt − 1, t = t + 1,
and return to step (2).

Output: a supplementary purchase profile p.
Proposition 6. Algorithm 1 gives an optimal solution to
the optimization problem (4).

Obviously, for the above example, the feasible supplemen-
tary purchase profile generated by Algorithm 1 is [1 0 0]

′.
In each iteration of this algorithm, the maximal flow in the
updated flow network is augmented by at most one unit,
so is the minimal element of the corresponding structure
tensor. No redundant power will be purchased, under the
supervision of the checker. If time-variant unit purchasing
prices are given for each time slot, we leave for future work
how to find a feasible supplementary purchase profile p to
minimize the total purchasing cost.

4. CONCLUSION

On the basis of duration differentiated energy services and
duration-deadline jointly differentiated energy services,
we further study the differentiated energy services with
multiple arrival times and multiple deadlines. Along this
research line, we concentrate on two problems related
to adequacy, namely, the adequacy condition and the

adequacy gap problem. Relating the adequacy condition to
a constrained (0, 1)-matrix feasibility problem, we take a
network flow approach to find the necessary and sufficient
conditions for adequate supply profiles, both numerically
and analytically. Essentially, the numerical method is to
find a constrained allocation, which delivers as many units
of power from the supply to the demand as possible.
Thus, if the supply is indeed adequate, a feasible allocation
is obtained as a by-product. The analytical condition is
characterized by the nonnegativity of a structure tensor
determined by the structural information triple (h, r, F ).
The physical interpretation behind the expression (7) of
a structure tensor is rather intuitive; i.e., the demand tail
should always be dominated by the supply tail considering
an adequate supply. To our delight, the adequacy gap
can be correspondingly obtained by way of the adequacy
conditions, as shown in Theorem 4. We also propose a
simple algorithm to find one of the feasible supplementary
purchase profiles.

In the future, we wish to explore the market imple-
mentation of differentiated energy services with multiple
arrival times and multiple deadlines. We shall further find
solutions to the minimum-cost purchase problem when
unit prices are time-variant, as mentioned. There are
other approaches in case of an insufficient supply. Under
some circumstances, the nominal provider cannot purchase
additional power from other grid markets. Consequently,
it may reject making contracts with several customers in
order that the rest demands can be accommodated well by
the estimated supply.

Moreover, another possible direction is to introduce more
load flexibilities into consideration. For instance, some
preliminary work on the case with peer-to-peer charging
allowed has been done in Mo et al. (2016). Also, numerical
experiments imply that a causal allocation policy does
not exist generally for the case with multiple arrival
times and deadlines. In this regard, we shall make efforts
to formulate suboptimal heuristic real-time scheduling
policies for practical applications, where the supply profiles
are only partly available.
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