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Abstract— The demand/supply balance in a power grid faces
great challenges as more and more renewables are integrated
into the system. Fluctuations in the power supply increases
spectacularly owing to the uncertain nature of renewables. In
this case, it has been widely recognized that the conventional
scheme of supply following load is neither economically efficient
nor environmentally friendly. On the contrary, an alternative
paradigm has been attracting more and more attention over
the recent years which attempts to utilize the flexibilities in
the demand side to compensate the uncertainties in the supply
side. Following this direction, we propose a duration-deadline
jointly differentiated energy service in this paper. Specifically,
we consider a group of flexible loads with each load requiring a
constant power level for a specified duration before a specified
deadline. A load is indifferent of the actual time of delivery as
long as the duration and deadline requirements are satisfied.
We first address the adequacy problem of a given supply profile
which boils down to solving a (0, 1)-matrix feasibility problem.
It turns out that the adequacy condition is given explicitly by the
nonnegativity of a structure matrix. We also develop a market
implementation of the proposed energy service and show the
existence of an efficient competitive equilibrium.

I. INTRODUCTION

The demand/supply balance in a power system has always
been a critical issue. It becomes particularly important when
large amount of renewables such as solar and wind are inte-
grated into the system. The highly uncertain and intermittent
nature of renewables imposes a big challenge to researchers
and engineers. How to maintain the demand/supply balance
in the presence of high uncertainties has been attracting great
attention in recent years.

Conventionally, balancing the demand and supply in a
power system is achieved through reserves, i.e., exploiting
the reserves in order to make the supply follow the demand.
Such supply following demand scheme works satisfactorily
when the power is mostly generated from traditional sources
such as fuels and nuclear, etc. However, as more renewables
are integrated into the grid, larger amount of reserves are re-
quired to maintain the balance. This is neither economically
efficient due to the high cost of reserves nor environmentally
friendly because of the extra creation of green-house gases.
Moreover, the fast ramping requirement is likely to increase
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the cost much further. Hence, the conventional scheme does
not appear as a wise choice any more in the presence of high
renewables.

In contrast, an alternative scheme has shown great promise
in balancing the demand and supply when deep penetration
of renewables is present. The underlying rationale is to ex-
ploit the flexibilities in the loads wisely so as to compensate
the uncertainties in the supply, i.e., to shape the demand so
as to meet the supply. Research along this direction belongs
to a broad category often referred to as demand response or
demand-side management. Typical examples of flexible loads
include the thermostatically controlled loads (TCLs), electric
vehicles (EVs), pool pumps, and smart appliances, etc. These
loads can be deferred, intermitted, or modulated, depending
on the nature of the particular loads. Many different schemes
have been proposed to exploit such load flexibilities, see for
instance [4], [9], [10], [11], [13], [14], [16], [17]. Recently,
a duration-differentiated energy service has been studied in
[12], wherein the loads are assumed to be indifferent of the
actual delivery time provided that the duration of the power is
the same. Another relevant work in [2] proposes a deadline-
differentiated energy service. There the loads are assumed
to be indifferent of the actual delivery time provided that a
delivery deadline is guaranteed.

One critical concern in demand response is the design of
the incentive mechanisms so as to motivate the consumers to
elicit their flexibilities. Under a properly designed incentive
mechanism, the consumers are expected to be appropriately
compensated for the flexibilities they might offer. Note that in
a traditional power market, electricity is more or less treated
as a homogenous product with a unit price. In order for the
consumers to elicit their flexibilities, the market design may
need to go beyond the traditional structure. Some sort of
differentiated energy service is needed so as to accommodate
different flexibilities that might be offered by consumers.
Several interesting attempts along this direction have been
reported in the literature. See for instance [2], [5], [12], [15],
[17], [18]. Of particular interest to us in the current work are
the market design of duration-differentiated energy service
as in [12] and the market design of deadline-differentiated
energy service as in [2].

In this paper, we propose and study the co-called duration-
deadline jointly differentiated energy service. Such differen-
tiated energy service takes into account the load flexibilities
exploited in [12] and [2] in a joint way. Specifically, assume
that the power delivery is segmented into a series of time
slots. Each flexible load demands a constant power level for
a specified duration before a specified deadline. Note that a
load is indifferent of the actual delivery time as long as both



the duration and deadline requirements are satisfied. Our first
concern is to characterize the adequacy condition of a given
supply profile which amounts to solving a matrix feasibility
problem. The adequacy condition is shown to be given by the
nonnegativity of a structure matrix. Moreover, we study the
market implementation of the proposed energy service and
show the existence of an efficient competitive equilibrium.

The rest of this paper is organized as follows. Section II
formulates the problem to be studied. Section III gives the
adequacy condition as well as the adequacy gap. Section IV
discusses the market implementation of the duration-deadline
differentiated energy service. Finally, the paper is concluded
in Section V. Most notation in this paper is more or less
standard and will be made clear as we proceed. A matrix S
is said to be nonnegative, denoted as S ≥ 0, if all the entries
of S are nonnegative.

II. PROBLEM FORMULATION

In this paper, we shall propose a duration-deadline jointly
differentiated energy service as an attempt to elicit the load
flexibilities to compensate the supply uncertainties. This
new scheme of energy service features the load flexibilities
discussed in [12] and [2] in a joint manner. Specifically, a
flexible load here is assumed to require a constant level of
power for a specified duration delivered before a specified
deadline. A typical motivating example is the electrical
vehicle charging. A customer may wish to specify a charging
duration as well as a deadline before which the charg-
ing should be completed. To highlight the key idea and
simplify the presentation, we shall start with a simple yet
representative case in which there are only two different
deadlines to choose. The extension to the general case with
arbitrary number of different deadlines would be rather
straightforward.

Assume that the power is delivered over T time slots. The
power available at time slot j is given by pj , j = 1, 2, . . . , T .
Consider N flexible loads, indexed by i = 1, 2, . . . , N . For
technical simplicity, assume that load i requires 1kW of
power for a total duration of hi time slots delivered before the
dith time slot, where hi ≤ di. Here the flexibility resides in
the fact that any hi time slots before the deadline di, whether
continuous or not, will satisfy the requirement of load i.
In this case, the energy services are differentiated by both
the service duration and deadline. Such energy services are
referred to as duration-deadline jointly differentiated energy
services herinafter.

For the brevity of presentation, we concentrate on the case
when there are only two different deadlines for the loads to
choose. In particular, assume that

d1 = d2 = · · · = dN1 = T,

dN1+1 = dN1+2 = · · · = dN = T1,

where T1 ≤ T . In words, due to the two different deadlines,
the loads are naturally divided into two groups: [1, N1] and
[N1+1, N ], where the loads of the first group require deadline
T while those of the second group require deadline T1. On
the other hand, these two deadlines divide the time slots into

two intervals: [1, T1] and [T1+1, T ]. Power supplies from
the first time interval can be allocated to both group of the
loads, while those from the second time interval can only be
allocated to the first group of loads.

Denote the power supply profile by

p =
[
p1 p2 . . . pT

]′
,

and the power demand profile by

h =
[
h1 h2 . . . hN

]′
,

respectively. A given supply profile p is said to be adequate
if there exits an allocation of power such that all the load
requirements are satisfied. Furthermore, a supply profile p is
said to be exactly adequate if it is adequate and there holds∑T

j=1 pj=
∑N

i=1 hi, i.e., there will be no excess supply after
allocation.

Our first concern is the adequacy, i.e., to find a necessary
and sufficient condition under which a given supply profile
is adequate. The second concern then follows naturally: the
adequacy gap, i.e., if the given supply profile is inadequate,
what is the minimum amount of additional purchase required
in order that the total supply is adequate? It turns out that
these concerns can be addressed by invoking our previous
results [6] on some (0, 1)-matrix feasibility problem. A brief
review on that matter will be given later. The main focus
of this paper is to develop a market implementation of such
duration-deadline jointly differentiated energy service. It is
expected that the loads with more degree of flexibility should
get more compensated via the market.

As far as market implementation is concerned, we would
like to consider a large collection of loads with no single load
big enough compared to the total available capacity. This will
lead to a perfectly competitive market wherein every player
is a price taker. In that case, the problem formulation may
need to be modified slightly. Specifically, we shall consider a
continuum of consumers indexed by x ∈ [0, 1]. Consumer x
demands r(x)kW of power for a duration of h(x) time slots
delivered before the d(x)th time slot, where h(x) ≤ d(x).
As before, consumer x is indifferent of the actual time of
service as long as the total duration is h(x) and the service
is delivered before the deadline d(x).

Note that when T1 = T , the scenario reduces to the case of
a single deadline which has been treated in [12]. In that case,
the services are only differentiated by the duration and, thus,
are referred to as the duration differentiated energy services.

III. ADEQUACY AND ADEQUACY GAP

The theme of this section is to characterize the adequacy
condition and the adequacy gap. To feature the essential idea,
we present the results for the case of finitely many consumers
in this section. The extension to the case of a continuum of
consumers will be discussed later.

The first step in characterizing the adequacy is to translate
the problem to a (0, 1)-matrix feasibility problem. It is easy
to see that allocating the power to the loads is equivalent to
filling an N × T (0, 1)-matrix A wherein each row corre-
sponds to one flexible load and each column corresponds to



one time slot. Observe that the two different deadlines divide
the time slots into two intervals: [1, T1] and [T1+1, T ], where
the power supplies from the first interval can be allocated to
all the loads while those from the second interval can only be
allocated to the loads requiring deadline T . Fitting into the
picture of filling a (0, 1)-matrix A, this imposes a structural
constraint, i.e., there exists a block at the bottom right corner
of A which is fixed to be zero. In other words, the matrix A
can be partitioned in the form as

A =

[
A1 A2

A3 O

]
, (1)

where O is an (N−N1)× (T−T1) zero block.
It can be clearly seen that a given supply profile is exactly

adequate if and only if one can find a (0, 1)-matrix A in
the form of (1) such that the row sum vector and column
sum vector are given by h and p, respectively. In this way,
the original adequacy problem is translated to a (0, 1)-matrix
feasibility problem. Note that the re-ordering of the rows and
columns of A should not affect the solvability of the matrix
feasibility problem as long as the zero block constraint is
not violated. Therefore, without loss of generality, we can
assume the following monotonicity on h and p:

h1 ≥ h2 ≥ · · · ≥ hN1 , hN1+1 ≥ hN1+2 ≥ · · · ≥ hN ,

p1 ≥ p2 ≥ · · · ≥ pT1 , pT1+1 ≥ pT1+2 ≥ · · · ≥ pT .

In general, such matrix feasibility problems with possibly
certain fixed zeros have been attracting considerable attention
from mathematics as well as many other fields. In particular,
the problem at hand has been treated in [3] and revisited in
our previous work [6]. A necessary and sufficient condition is
obtained in [6] by exploiting a well-defined structure matrix
S(h, p), wherein the (k1, k2)th element is given by

Sk1k2(h, p) =

T1∑
j>k1

pj +
T∑

j>T1+k2

pj

−
N1∑
i=1

[hi − (k1+k2)]
+ −

N∑
i=N1+1

(hi − k1)
+, (2)

where 0 ≤ k1 ≤ T1 and 0 ≤ k2 ≤ T−T1. The matrix S is
referred to as a structure matrix since it is solely determined
by the structure information: h, p, and the fixed zero block.
It has nothing to do with the specific choice of A.

Lemma 1 ([6]): There exists a (0, 1)-matrix of the form
(1) with row sum vector h and column sum vector p if and
only if the structure matrix S ≥ 0.

The revealing of Lemma 1 gives a precise solution to the
adequacy problem, as stated in the following theorem.

Theorem 1: A supply profile p is adequate if and only if
S ≥ 0. If further there holds

∑N
i=1 hi =

∑T
j=1 pj , then p is

exactly adequate.
The mathematical expression of the structure matrix S as

in (2) may look somehow complicated at first sight. However,
it has a rather intuitive physical interpretation. A good one-
sentence summary is simply the energy dominance in tails.

Specifically, in the expression (2), the terms

T1∑
j>k1

pj and
T∑

j>T1+k2

pj

represent the supply tails from the time interval [1, T1] and
[T1+1, T ], respectively. On the other hand, the terms

N1∑
i=1

[hi − (k1+k2)]
+ and

N∑
i=N1+1

(hi − k1)
+

represent the demand tails from the group of loads [1, N1]
and [N1+1, N ], respectively. In this regard, the nonnegativity
of the structure matrix is nothing but the requirement that the
supply tails should be no less than the demand tails, which
is quite intuitive.

One can refer to [6] for the details on the derivation of the
adequacy condition. The main idea is sketched as below. The
key is to translate the matrix feasibility problem to a network
flow feasibility problem [8] and then use the celebrated max-
flow min-cut theorem [7]. However, a direct application of
the max-flow min-cut theorem gives an exponential number
of inequalities which are of limited practical use. However,
thanks to the nice structure of the fixed zeros in the current
problem, it turns out that among those exponential number
of inequalities, most of them are redundant and, thus, can be
excluded. In this way, we manage to reduce the number of
inequalities substantially and obtain the condition given in
terms of the nonnegativity of the structure matrix S.

Remark 1: When T1 = T , the scenario simplifies to the
case of one single deadline. Associated with it is a matrix
feasibility problem with given row and column sums but no
fixed zeros. In that case, the nonnegativity of S reduces to
the well-known majorization condition [8], [12].

After obtaining the adequacy condition, we raise a natural
follow-up question: If a supply profile p is not adequate, what
is the minimum amount of additional purchase required to
make the total supply be adequate? This amounts to solving
the following optimization problem:

min
a

T∑
j=1

aj , subject to S(h, p+ a) ≥ 0,

where a =
[
a1 a2 · · · aT

]′ is a non-negative integer
vector representing the additional purchase. Note that the
network flow approach sketched in the above not only reveals
the adequacy condition, but also gives an explicit solution to
the adequacy gap as a by-product. See the following theorem.
The details of the proof can be referred to [6] and is omitted
here for brevity.

Theorem 2: When p is not adequate, the minimum total
amount of additional purchase required for adequacy is∣∣∣∣ min

0≤k1≤T1,0≤k2≤T−T1

Sk1k2(h, p)

∣∣∣∣ .



IV. MARKET IMPLEMENTATION

This section is dedicated to investigating a forward market
implementation of the duration-deadline jointly differentiated
energy service.

As reasoned before, here we shall consider a continuum
of consumers such that each consumer can be viewed as a
price taker. A forward market structure is considered, i.e., all
the transactions are completed before the time of delivery.
The market consists of three elements:

• Services: The power delivery is segmented into T time
slots. The energy services are differentiated by both the
duration and deadline requirements. Suppose there are
two different deadlines, T1 and T , for the consumers to
choose. The service of duration h and deadline d has a
price πd

h.
• Consumers: There is a continuum of consumers indexed

by x ∈ [0, 1]. The utility function of consumer x who
receives r(x) kW of power for h(x) time slots delivered
before deadline d(x) is given by U(x, r(x), h(x), d(x)).
Assume that U(x, 0, h(x), d(x)) = 0.

• Supplier: Consider an aggregate supplier who has avail-
able for free a supply profile p=

[
p1 p2 . . . pT

]′.
The information flow of the market is as follows: Facing

a menu of services associated with prices M = {h, d, πd
h},

consumer x chooses a service {h(x), d(x)} and a level r(x)
kW in order to maximize his/her benefit, while the supplier
decides the amount nd

h of each service {h, d} to produce so
as to maximize its revenue.

In the sequel, we first approach the social welfare problem
and proceed to show that the optimal social allocation can
be sustained as a competitive equilibrium.

Before proceeding, let us revisit the adequacy concern in
the scenario of a continuum of consumers. To one’s delight, it
turns out that the results obtained in the previous section can
be extended here with a slight modification on the definition
of the structure matrix:

Sc
k1k2

(h, p) =

T1∑
j>k1

pj +

T∑
j>T1+k2

pj

−
∫ 1

0

r(x)
[
(h(x)− (k1+k2))

+1(d(x)=T )
]
dx

−
∫ 1

0

r(x)
[
(h(x)− k1)

+1(d(x)=T1)
]
dx,

where 0 ≤ k1 ≤ T1 and 0 ≤ k2 ≤ T−T1. The superscript c
in Sc

k1k2
(h, p) is used to refer to the continuum case.

Theorem 3: A supply profile p is adequate to satisfy the
requirements of a continuum of consumers if and only if
Sc(h, p) ≥ 0. Moreover, in the event of an inadequate supply,
the adequacy gap is given by∣∣∣∣ min

0≤k1≤T1,0≤k2≤T−T1

Sc
k1k2

(h, p)

∣∣∣∣ .
The proof of the above theorem follows straightforwardly

from the results in the previous section together with some
limit process. The details are omitted here for brevity.

A. Social welfare optimization

The social welfare problem aims at finding an allocation of
the services that maximizes the overall benefit of the society.
Given a supply profile p and a continuum of consumers
indexed by x ∈ [0, 1], a social allocation of the services
x 7→ (r(x), h(x), d(x)) is said to be feasible if p is adequate
to meet the associated demand profile. Since we assume that
the supply is available for free, together with the fact that the
total costs of the consumers and the revenue of the supplier
will cancel each other, maximizing the overall benefit of the
society boils down to maximizing the integral of the utility of
all the individual consumers. To be more precise, the social
welfare problem is formulated as the following optimization
problem:

max
r(x),h(x),d(x)

∫ 1

0

U(x, r(x), h(x), d(x))dx

s.t. r(x) ≥ 0, h(x) ≤ d(x), d(x) ∈ {T1, T}
Sc(h, p) ≥ 0

The main result of this subsection is stated in the following
theorem.

Theorem 4: The social welfare optimization problem has
a solution for any type of utility function U(x, r, h, d).

Proof: Define Z(x) = [zk1k2(x)] with Z(0) = 0 and

Ż(x) = F (x) = [fk1k2(x)], (3)

where

fk1k2(x) =



r(x)[(h(x)− (k1+k2))
+1(d(x) = T )

+(h(x)− k1)
+1(d(x) = T1)],

when 0 ≤ k1 ≤ T1, 0 ≤ k2 ≤ T−T1,

U(x, r(x), h(x), d(x)),

when k1 = T1+1, 0 ≤ k2 ≤ T−T1.

For x ∈ [0, 1], let

F(x) = {F (x)|r(x) ≥ 0, h(x) ≤ d(x), d(x) ∈ {T1, T}}.

Then x 7→ F(x) in fact gives a set-valued correspondence
and, thus, the differential equation (3) can be written as a
differential inclusion:

Ż(x) ∈ F(x). (4)

Let G be the integral of the set-valued correspondence F(x):

G =

∫ 1

0

F(x)dx.

In view of (4), it follows that

G = {Z(1)|Z(1) is reached by a service allocation
x 7→ (r(x), h(x), d(x))} .



With the aid of the set G, the welfare optimization problem
can be restated as

max
Z(1)∈G

zT1+1 0(1) (5)

s.t. zk1k2(1) ≤
T1∑

j>k1

pj +
T∑

j>T1+k2

pj (6)

for 0 ≤ k1 ≤ T1, 0 ≤ k2 ≤ T−T1.

By a theorem of Lyapunov on the convexity of the range
of a set-valued integral [1], we know that G is convex and
closed. In addition, as clearly seen, the adequacy constraint is
nothing but a set of linear inequalities. Therefore, the optimal
solution Z∗(1) exists regardless of the form of the utility
function which concludes the proof.

Remark 2: The solvability of the social welfare problem
regardless of the form of the utility function as indicated in
Theorem 4 relies critically on the assumption of a continuum
of consumers. If finitely many consumers are considered, it is
expected that the solvability would require certain convexity
properties of the utility functions.

B. Competitive equilibrium analysis

One fundamental issue in market implementation concerns
the question whether or not the optimal social allocation can
be sustained as a competitive equilibrium. If the answer is
affirmative, it means that the market is able to operate in a
decentralized manner under the guidance of the price signal.

For the proposed duration-deadline jointly differentiated
energy service, a competitive equilibrium has to satisfy three
conditions:

1) Consumers maximize their welfare. Consumer x selects
r(x) kW of a service (h(x), d(x)) in order to maximize
his/her welfare, i.e., to solve the following optimization
problem:

max
r,h,d

U(x, r, h, d)− rπd
h.

2) Supplier maximizes revenue. The supplier sees a market
of different energy services with associated prices M =
{h, d, πd

h}. It then uses its available supply profile p to
produce such services. The question facing the supplier
is to decide how much it will produce for each service
to maximize its revenue. Denote the amount of service
{h, d} to be produced by nd

h, where h≤d, d={T1, T}.
To ensure the feasibility of this production bundle, the
implicit constraint on the adequacy of the supply profile
must be taken into account. Adapting the adequacy con-
dition here, the supplier revenue optimization problem
can be mathematically stated as:

max
nT
h ,n

T1
h

T∑
h=1

nT
hπ

T
h +

T1∑
h=1

nT1

h πT1

h

s.t.
T1∑

j>k1

pj +

T∑
j>T1+k2

pj −
T∑

j>k1+k2

δTj −
T1∑

j>k1

δT1
j ≥0

for 0 ≤ k1 ≤ T1, 0 ≤ k2 ≤ T − T1,

where δTj =
∑

j≤h≤T nT
h , and δT1

j =
∑

j≤h≤T1
nT1

h .

3) The market clears, i.e.,

nT
h =

∫ 1

0

r(x)1(h(x)=h, d(x)=T )dx, for 1≤h≤T,

nT1

h =

∫ 1

0

r(x)1(h(x)=h, d(x)=T1)dx, for 1≤h≤T1.

In words, the amount of each service produced is equal
to the amount demanded.

As described above, decisions are made in a decentralized
manner. The individual consumers choose to maximize their
own welfare while the supplier aims to maximize its revenue.
When market clears, a competitive equilibrium is reached. If
the resulting allocation of the services maximizes the social
welfare as well, the competitive equilibrium is said to be
efficient.

The next theorem establishes the existence of an efficient
competitive equilibrium.

Theorem 5: There exists an efficient competitive equi-
librium in a forward market for duration-deadline jointly
differentiated energy services.

Proof: Let Z∗(1) be the optimal solution to the social
welfare problem (5) and x 7→ (r∗(x), h∗(x), d∗(x)) be the
corresponding optimal social allocation. Dualizing the social
welfare problem with respect to (6) implies that there exists
λk1k2

≥ 0, 0 ≤ k1 ≤ T1, 0 ≤ k2 ≤ T−T1, such that Z∗(1)
is also the solution to the following optimization problem:

max
Z(1)∈G

zT1+1 0(1)−
∑
k1,k2

λk1k2zk1k2(1). (7)

In addition, complementary slackness indicates that

λk1k2

z∗k1k2
(1)−

 T1∑
j>k1

pj +
T∑

j>T1+k2

pj

 = 0, (8)

for 0≤ k1 ≤ T1, 0≤ k2 ≤ T − T1. In view of (3), the term
being maximized in (7) can be rewritten as∫ 1

0

{U(x, r, h, d)− rπd
h}dx,

where

πd
h =

∑
k1,k2

λk1k2 [h−(k1+k2))
+1(d=T )

+ (h−k1)
+1(d=T1)]. (9)

Since Z∗(1) maximizes this term, it follows that

(r∗(x), h∗(x), d∗(x)) = argmax
r,h,d

U(x, r, h, d)− rπd
h.

Interpreting the quantity πd
h as in (9) as the price of service

{h, d}, the above identity shows that under such prices, the
consumption pattern chosen by the consumers to maximize
their welfare is consistent with the optimal social allocation.

In order to show πd
h as in (9) indeed gives the equilibrium

price, it suffices to show that under such prices, the supplier
revenue optimization leads to a production bundle nd

h that



clears the market. To this end, note that the supplier’s revenue
can be written as

T∑
h=1

nT
hπ

T
h +

T1∑
h=1

nT1

h πT1

h

=

T∑
j=1

δTj (π
T
j − πT

j−1) +

T1∑
j=1

δT1
j (πT1

j − πT1
j−1),

where δTj =
∑

j≤h≤T nT
h , δ

T1
j =

∑
j≤h≤T1

nT1

h . Substituting
the expression of πd

h into the above equation yields

T∑
h=1

nT
hπ

T
h +

T1∑
h=1

nT1

h πT1

h

=
T∑

j=1

δTj
∑

k1+k2<j

λk1k2
+

T1∑
j=1

δT1
j

∑
k1<j

λk1k2

=
∑

k1+k2≤T

λk1k2

 T∑
j>k1+k2

δTj +

T1∑
j>k1

δT1
j


≤

∑
k1+k2≤T

λk1k2

 T1∑
j>k1

pj +

T∑
j>T1+k2

pj


=

∑
k1+k2≤T

λk1k2z
∗
k1k2

(1),

where the inequality follows from the adequacy constraint
and the last equality follows from the complementary slack-
ness as in (8). It can be easily verified that this upper bound
on the revenue can be achieved when

nT
h =

∫ 1

0

r(x)1(h∗(x)=h, d∗(x)=T )dx, for 1≤h≤T,

nT1

h =

∫ 1

0

r(x)1(h∗(x)=h, d∗(x)=T1)dx, for 1≤h≤T1,

and, thus, the market clears. This completes the proof.
Remark 3: In view of the price πd

h as in (9), two intriguing
observations can be made. Firstly, for a fixed deadline d, πd

h

is non-decreasing in h with non-decreasing increments, i.e.,
the marginal price is increasing as h increases. Secondly, for
a fixed duration h, we have πT1

h ≥ πT
h . In other words, one

needs to pay more for the same duration of power if he/she
requires a shorter deadline. Both observations coincide with
the intuition that consumers with more flexility should get
more compensated in such a power market.

V. CONCLUSION

In this paper, we investigate a duration-deadline jointly
differentiated energy service. It gives a potential way of using
load flexibilities to compensate the supply variations in a sus-
tainable grid with high renewable penetrations. Specifically,
we consider a group of flexible loads with each load requiring
a constant power level for a specified duration before certain
deadline. The flexibility resides in the assumption that a load
is indifferent of the actual service time as long as the duration
and deadline requirements are satisfied. We first approach the
adequacy concern which amounts to solving a (0, 1)-matrix

feasibility problem with certain fixed zeros. The adequacy
condition is given explicitly in terms of the nonnegativity
of a structure matrix. We then develop a forward market
implementation of the proposed energy service and show the
existence of an efficient competitive equilibrium.

For brevity of presentation, we concentrate on the scenario
of two different deadlines in the current paper. This is a quite
representative scenario and all the results presented here can
be easily extended to general scenarios of multiple deadlines.
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