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Abstract— With the high penetration of renewable energy,
the conventional solution to balancing supply and demand
requires substantial reserve generations and, thus, curtails the
environmental and financial benefits. To mitigate the overuse of
reserves, an alternative approach, widely referred to as demand
response, has been attracting increasing attention. The essence
is to exploit the flexibility in demand to compensate for the
variability in supply. Among the various forms of demand
response, of particular interest to us is the so-called duration-
differentiated energy service, in which a load requires a constant
power level for a specified duration of time. In this paper, we
further explore this by taking the charging/discharging interac-
tions among the loads into account. The introduction of peer-to-
peer charging facilitates power allocation and enlarges the set
of adequate supply profiles. We propose an algorithm for power
allocation and show that a given supply profile is adequate if
and only if the algorithm produces a feasible allocation. We also
relate this algorithm to dynamic programming. In the case of
an inadequate supply, the adequacy gap can be obtained via a
slightly modified algorithm.

I. INTRODUCTION

In order to build a sustainable power system, the use of
renewable resources is of central importance. The fact that
the renewable energy production is inherently uncertain and
intermittent makes the balance of demand and supply more
challenging. How to achieve the demand/supply balance is
believed to play a pivotal role in the increasing prevalence
of renewable supply [1], [2].

The traditional way to balance supply and demand is a
supply side approach, i.e., utilizing the reserve generation to
compensate for the fluctuation in the demand. This strategy
has proven to be successful when the majority of power
is generated from traditional resources such as fossil fuels.
However, as the proliferating renewables are integrated into
the grid, the requirement for reserve generation is boosted
significantly due to the uncertain and intermittent nature of
renewables. Apart from being economically inefficient, the
over-reliance on reserves may curtail the environmental bene-
fits brought about by renewables since the reserve generation
is mostly based on fossil fuels [3], [4].

While the conventional scheme is facing huge challenges,
a burgeoning consensus suggests that the demand side ap-
proach is a promising alternative. The idea originates from
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the awareness of various flexibilities residing in different
loads. To be specific, some loads can be deferred or inter-
mitted, while some others can be modulated, depending on
their respective natures. Typical examples include electric
vehicles, thermostatically controlled loads, residential pool
pumps, commercial HVAC systems and other smart appli-
ances. The demand side approach, widely known as demand
response, aims at exploiting the flexibility in the demand to
compensate for the uncertainty in the supply. This idea has
been reflected in the GRIP (Grids with Intelligent Periphery)
architecture advocated in [5]. In this architecture, diverse
geographically-dispersed resources are aggregated, while lo-
cal scheduling and control strategies are implemented on
the loads. Recently, many works have been reported, about
modeling, characterizing, and utilizing the flexible loads.
See, for instance, [6]–[10]. Moreover, a variety of market
mechanisms have been designed to motivate consumers to
elicit their flexibilities in return for financial compensation
[6], [11]–[15]. Such markets provide differentiated energy
services based on different levels of flexibility. This casts
off the traditional market structure, which treats electricity
as a homogenous product with a single unit price.

Following is a review of the existing literature closely
related to the contents of this paper. Under the GRIP architec-
ture, a duration-differentiated energy service was proposed
in [14]. As indicated by name, the energy services are dif-
ferentiated by their durations only. The loads are assumed to
be indifferent to the actual delivery time, provided that their
respective duration requirements are respected. This idea was
extended in [15] and [16] to the duration-deadline jointly
differentiated energy service, in which both duration and
deadline are the factors that discriminate the energy services.
There are two main issues discussed in this series of works.
One aims at the problems related to adequacy. Analytical
conditions have been established for a given supply profile to
be adequate to satisfy all the load requirements. Meanwhile,
algorithms for finding a feasible power allocation have been
developed. The other issue is concerned with the market
implementation of such differentiated energy services. It
has been shown that there exists a forward market with
an efficient competitive equilibrium with such services, as
illustrated in [14] and [15].

Inspired by the works above, in this paper, we take one
step forward and introduce the peer-to-peer charging to
the duration-differentiated energy services. The motivation
mainly comes from the rapid development of energy storage
and transfer. These new developments in technology make
the interactive charging among different loads not only
technologically feasible but also economically practicable, as



illustrated in [5] and [17]–[19]. The introduction of peer-to-
peer charging enables the possibility of temporarily storing
the power in some loads in service and then conveying it to
different loads at a later time. We are driven to understand the
potential advantages brought about by this additional dimen-
sion of flexibility. As a starting point, we concentrate on the
power allocation related issues in this paper. Specifically, we
develop an algorithm of power allocation for the duration-
differentiated energy services with peer-to-peer charging. A
given supply profile is shown to be adequate if and only if the
proposed algorithm produces a feasible allocation. In the case
of an inadequate supply, the algorithm can be modified to
find the adequacy gap, i.e., the minimum additional purchase
of power required to satisfy all the load requirements. We are
also interested in the market implementation of such services
and the practical implications that can be derived from the
market analysis. This is under our current investigation.

The rest of this paper is organized as follows. The problem
is formulated in Section II. The allocation algorithm and its
connection to the adequacy is presented in Section III. A
further analysis of the algorithm is presented in Section IV.
The adequacy gap is discussed in Section V. Some illustrative
examples are shown in Section VI. Finally, we conclude the
paper and articulate the future work in Section VII. The
notation adopted in this paper is standard, in general, and
will be made clear as we proceed. The proofs are left out in
consideration of fluency and page limitations. The ideas of
the proofs are sketched and the details can be found in the
longer version of the paper available from the authors.

II. PROBLEM FORMULATION

Suppose the power is delivered over a horizon of T time
slots, indexed by {t : t = 1, 2, . . . , T}. Denote by ht the
power available at the tth time slot. Consider a collection
of N flexible loads, wherein load i is characterized by three
parameters: the duration requirement ri, the arrival time ai,
and the deadline di. In a compact form, load i is represented
as a triple Li = (ri, ai, di). We tacitly assume ri, ai, and
di are all integers, and ri ≤ di − ai + 1, i.e., the duration
requirement should be no more than the number of time slots
available between the arrival and deadline. Load i is said to
be active at time t if ai ≤ t ≤ di. An active load presents
a three-state switching behavior: charging state, discharging
state, and off state. For technical simplicity, assume that the
charging and discharging rate of each load is 1 unit of power
per time slot. As such, the power consumption of an active
load i at time slot t is given by

u(i, t) =


1, Charging state,
−1, Discharging state,
0, Off state.

Note that the acquired one unit of power in the charging
state can come from either the allocation of the supply or
the discharging of another load. For a load in the discharging
state, there is another load in the charging state at the same
time slot receiving the discharged power. A load in the off
state gets neither charged nor discharged.

The energy state of load i at time slot t is then given by

s(i, t) := s(i, t− 1) + u(i, t) =

t∑
k=ai

u(i, k),

where a zero initial state is assumed, i.e., s(i, ai) = 0. The
energy state s(i, t) signifies the level of accumulated energy
in load i at time t. It is required to satisfy the constraint

s(i, t) ≥ 0 (1)

for every possible i and t. This constraint is due to the zero
initial condition assumed, thus a load cannot discharge more
units than it has obtained. In this paper, we assume that each
load is equipped with an auxiliary power storage capacity
so that it can get more units of power than required at the
intermediate time slots.

Denote the supply profile and the demand profile by

h =
[
h1 h2 · · · hT

]′
,

r =
[
r1 r2 · · · rN

]′
,

respectively. A supply profile is called adequate if there exists
a three-state allocation such that all the load requirements are
satisfied subject to the energy state constraint (1). If, further,
the supply profile has no surplus after allocation, it is called
exactly adequate.

As a first attempt, we consider the case where
∑T

t=1 ht =∑N
i=1 ri for simplicity. That is to say, the total energy given

by the supply profile equals the total energy required by the
demand. We begin with a collection of homogenous loads
with the same arrival time ai = 1 and the same deadline
di = T , as in the duration-differentiated energy services.

Note that finding a three-state allocation is equivalent to
filling a (−1, 0, 1)-matrix with prescribed row and column
sums. Accordingly, the energy state constraint (1) corre-
sponds to a constraint on the leading partial row sums of the
(−1, 0, 1)-matrix. When the peer-to-peer charging is absent,
the allocation reduces to a (0, 1)-matrix completion problem,
as in [14], [16] and [20].

We firstly address the adequacy. Given a supply profile
and a demand profile, can we find a way to verify whether
the supply profile is adequate or not? If it is adequate, how
do we find a feasible power allocation? A natural follow-up
question is the adequacy gap. If the given supply profile is
inadequate, what is the minimum amount of supplementary
purchase required so as to make the total supply adequate?
This amounts to solving the following optimization problem:

min
p

T∑
t=1

pt,

subject to h+ p is adequate,

(2)

where p =
[
p1 p2 · · · pT

]′
is an integer vector denoting

the supplemental purchase.



III. ADEQUACY AND ALLOCATION ALGORITHM

In this section, we design a power allocation algorithm for
the duration-differentiated energy services with peer-to-peer
charging, and show that a given supply profile is adequate if
and only if the algorithm gives a feasible allocation.

An allocation algorithm or policy is said to be optimal
in terms of feasibility if for any adequate supply profile, it
always gives a feasible allocation. In this sense, an optimal
allocation algorithm can be used to check whether a supply
profile is adequate or not. In what follows, such an optimal
allocation algorithm is proposed. It runs backwardly from the
last time slot to the preceding ones and, thus, requires the
knowledge of the whole supply profile in advance, which can
be obtained from a day-ahead forecast in a forward market.

To introduce the algorithm, we need more notation. Keep
in mind that the allocation is performed in a backward way. A
load is said to be urgent (insatiable, respectively) at time slot
t if its remaining duration requirement is equal to (greater
than, respectively) t. Intuitively, an urgent load at time slot t
needs to receive power at every remaining time slot. Denote
the set of urgent loads (insatiable loads, respectively) at time
slot t by Ut (It, respectively), i.e.,

Ut = {Li : ri −
T∑

k=t+1

u(i, k) = t},

It = {Li : ri −
T∑

k=t+1

u(i, k) > t}.

Moreover, denote the cardinality of Ut and It by |Ut| and
|It|, respectively.

The essential idea of our algorithm is a recursive imple-
mentation of the following three rules.
1: The supply ht is allocated with priority given to the loads

with longer remaining durations.
2: If the supply ht is not sufficient to meet all the urgent

loads at time t, i.e., ht < |Ut|, then the peer-to-peer
charging is activated. Specifically, there would be |Ut|−ht

number of urgent loads to be charged by their non-urgent
peers. The loads with shorter remaining durations are
given priority to discharge power.

3: After the implementation of rule 1 and 2, if there are
two loads in the off state with their remaining durations
differing by more than one unit, then the load with the
shorter duration conveys one unit of power to the one
with the longer duration. Again, the priority of charging
and discharging is consistent with rule 1 and 2.

We demonstrate these steps by a simple example. Suppose
T = 9, r = [9 9 9 6 6 3 1]′, and hT = 2. Table I presents two
possible allocations at time T following the above three rules.
Note that the first three loads are urgent and the power supply
is only enough to meet two of them. The other one needs
to receive power from the non-urgent load with the shortest
duration. Then, observe that the fifth and sixth loads have
a duration difference greater than one. By rule 3, the sixth
load conveys one unit of power to the fifth load. We consider

the two allocations equivalent since one can be transformed
into the other via load re-ordering.

(a)

� · · · 2
9 · · · 1
9 · · · 1
9 · · · 1
6 · · · 0
6 · · · 1
3 · · · -1
1 · · · -1

(b)

� · · · 2
9 · · · 1
9 · · · 1
9 · · · 1
6 · · · 1
6 · · · 0
3 · · · -1
1 · · · -1

TABLE I
THE TWO POSSIBLE LAST-COLUMN ALLOCATIONS

We are now in a position to formally present our allocation
algorithm and its connection to the adequacy of a given
supply profile. See Algorithm 1 and Theorem 3.1.

Algorithm 1 Allocation Algorithm
Input: The demand profile r and supply profile h.
Output: An exception or an allocation matrix U .

1: Initialization: t = T,U = 0N×T ;
2: Allocate the supply ht to renew U(1 : N, t) by the three

steps described above;
3: Update the supply profile by deleting ht. Update ri =

ri − U(i, t), for every i = 1, 2, . . . , N ;
4: If some load is insatiable under the new supply profile,

this algorithm terminates with an exception. Otherwise,
t = t− 1;

5: If r becomes a zero vector, output U . Otherwise, go to
step 2.

Theorem 3.1: The supply profile h is exactly adequate if
and only if Algorithm 1 produces a feasible allocation matrix.

The sufficiency proof of Theorem 3.1 is straightforward.
The main idea of necessity proof is sketched below. We first
show that given an adequate supply profile, there always ex-
ists a feasible allocation, whose last-column states of all the
loads satisfy the three rules above. Such a feasible allocation
is called the last-column optimal allocation. Next, we show
that such last-column optimal property still holds when the
supply profile and demand profile are updated as in Step 3 of
Algorithm 1. By applying the last-column optimal allocation
repeatedly, Algorithm 1 generates a feasible allocation U∗.
This allocation is referred to as a canonical allocation and
satisfies the following property:

For every t = 1, 2, . . . , T , the allocation represented by
U∗(1 : N, 1 : t) is last-column optimal with respect to the
supply profile ht =

[
h1 h2 · · · ht

]′
and the demand

profile rt =
[
rt1 rt2 · · · rtN

]′
, where rti is the ith row

sum of U∗(1 : N, 1 : t).
Theorem 3.1 indicates that one can verify the adequacy of

the supply profile via Algorithm 1. However, the algorithm
does not give an explicit adequacy condition, as opposed to
the majorization relation obtained in the case of no peer-
to-peer charging [14], [21]. To obtain an analytic condition
for the problem at hand, a technical issue is that the supply
profile now cannot be arbitrarily reordered due to the energy



state constraint (1). Nevertheless, one can still draw some
inspirations from the majorization condition applicable to the
case with no peer-to-peer charging. In fact, the majorization
condition represents a certain dominating relation between
two vectors derived from the supply profile and the demand
profile, respectively. Likewise, we also expect to find a way
to construct two corresponding vectors that satisfy a similar
dominating relation in the case with peer-to-peer charging.
Detailed discussions are out of the scope of this paper.

Before proceeding, note that the algorithm proposed above
is non-causal since it requires the knowledge of the whole
supply profile in advance. In real-time allocations, a causal
algorithm is more desirable, in the sense that the allocation at
time slot t does not require the information of future supply.
It is of great interest to ask whether there exists a causal
optimal allocation policy. If there exists, how to design one?
If not, can we explore some sub-optimal heuristic allocation
algorithms? These questions are under current investigation.
We expect that the approach in [22] may give us a hint.

IV. ALGORITHM ANALYSIS

In this section, we further analyze Algorithm 1 and relate
it to dynamic programming.

A. Complexity of Algorithm 1

The Algorithm 1 mainly involves a loop of at most T
iterations. Each iteration consists of a column allocation, a
profile update and an insatiable load detection, corresponding
to Step 2, Step 3 and Step 4, respectively. Consequently,
the complexity of each iteration is O(N). In a worst-case
analysis, the overall complexity of Algorithm 1 is O(T ·N).

B. Significance of the three rules

In the duration-differentiated energy services with no peer-
to-peer charging, the longest duration first (LDF) algorithm
works as an optimal allocation policy. In essence, the LDF
algorithm is nothing but the first rule. The necessity of the
second rule is also easy to understand since urgent loads have
to be duly served. If the urgent loads cannot be charged
by the supplier, then other loads should discharge their
energy storage to satisfy the requirements of the urgent loads.
Inspired by the idea of LDF, the loads with shorter remaining
durations discharge their energy with priority. To pursue an
optimal allocation policy in terms of feasibility, the third rule
is indispensable. Although it may involve some redundant
peer-to-peer charging in some special cases, it is necessary to
enforce this rule to guarantee a feasible allocation in general.
This is illustrated by an example in Table II. When t = 4
in Algorithm 1, the first load is not urgent by definition, but
the remaining durations of the two loads have a difference 2.
According to the third rule, we should renew the allocation
at the last time slot as U(1 : 2, 4) = [1 − 1]′. Otherwise, we
cannot achieve a feasible allocation.

� 0 2 2 0
3 0 1 1 1
1 0 1 1 -1

TABLE II

C. Relation to dynamic programming

In view of the recursive nature of Algorithm 1, one can
relate the algorithm to a dynamic programming.

Let us decompose the optimal feasible allocation problem
into T stages. At stage k, the state Sk is a sub-allocation
U(1 : N, (k + 1) : T ) and the decision dk is an allocation
U(1 : N, k) of the supply hk. The supplies from the first time
slot to the kth time slot remain to be allocated. If there exists
a feasible allocation with decision dk and sub-allocation Sk,
then the return fk(dk, Sk) for stage k is one. Otherwise, the
return is zero. Let ST = ∅ and d0 = ∅.

Consider the following optimization problem over the
decision variables dT , dT−1, . . . , d2, d1:

max [f1(d1, S1) + f2(d2, S2) + · · ·+ fT (dT , ST )]

subject to

Sk−1 = [dk Sk], k = 1, 2, . . . , T,

dk ∈ Dk, k = 1, 2, . . . , T,

where Dk denotes the set of all N -dimensional (−1, 0, 1)-
vectors with the sum of elements being smaller than or equal
to hk. Starting from the last stage, a dynamic programming
gives an optimal solution dT , dT−1, . . . , d1 in a backward
manner. It turns out that our algorithm can be regarded as
an implementation of such a dynamic programming.

V. ADEQUACY GAP

In Section III, we give a way to verify the adequacy of the
supply profile via Algorithm 1. In the event of an inadequate
supply, the algorithm terminates with an exception. A natural
follow-up question then arises: What is the minimum amount
of additional power needed to serve all the loads? This boils
down to the optimization problem (2) of which the optimal
value is called adequacy gap, denoted by g. It turns out that
such an adequacy gap problem can be solved via a slight
modification of Algorithm 1.

Theorem 5.1: If the supply profile h is inadequate, then
Algorithm 2 gives a feasible supplementary purchase p that
achieves the adequacy gap g.

Algorithm 2 Adequacy Gap Algorithm
Input: The demand profile r and supply profile h.
Output: A supplementary purchase p and adequacy gap g.

1: Initialization: t=T,U=0N×T , p=0, g=0;
2: Do as in Step 2 of Algorithm 1;
3: Let pt = |It−1|. Update g = g + pt and ht = ht + pt;
4: Do as in Step 2 of Algorithm 1;
5: Do as in Step 3 of Algorithm 1. Update t = t− 1;
6: If t == 0, output p, g. Otherwise, go to step 2.

It is not difficult to see the vector p given by Algorithm 2
is a feasible supplementary purchase vector. However, it will
take more efforts to show that the sum of the elements of p
indeed achieves the adequacy gap. Also note that the optimal
solution of (2) may not be unique in general. This will be
illustrated by a numerical example in the next section.



VI. NUMERICAL EXAMPLES

In this section, several numerical examples are given to
demonstrate the duration-differentiated energy services with
peer-to-peer charging.

Example 1: One significant characteristic of the duration-
differentiated energy services is that the load is indifferent
to the actual delivery time. Suppose that there is a load i
requiring two units of power over six time slots. As shown in
Table III, the first three serving strategies are indifferent for
the load. However, the last serving strategy is not applicable,
since the energy state s(i, 3) = −1 violates the constraint (1).

1) 2 1 1 1 -1 0 0

2) 2 1 -1 0 1 0 1

3) 2 1 0 0 1 0 0

4) 2 1 -1 -1 1 1 1
TABLE III

Example 2: Suppose the power is delivered over eight
time slots and there are six flexible loads. The supply profile
is given by h = [6 5 1 4 4 3 2 1]′ and the demand profile
is given by r = [8 8 4 3 2 1]′. The following table shows
the process of implementation of Algorithm 1. In the case
when multiple loads require the same remaining duration,
we allocate in a way such that the remaining demand profile
after the allocation is still a non-increasing vector. One can
see that the algorithm produces a feasible allocation and thus
the supply profile h is adequate.

� · · · 1
8 · · · 1
8 · · · 1
4 · · · 1
3 · · · 0
2 · · · -1
1 · · · -1

=⇒

� · · · 2 1
7 · · · 1 1
7 · · · 1 1
3 · · · 0 1
3 · · · 0 0
3 · · · 0 -1
2 · · · 0 -1

=⇒

� · · · 3 2 1
6 · · · 1 1 1
6 · · · 1 1 1
3 · · · 0 0 1
3 · · · 0 0 0
3 · · · 1 0 -1
2 · · · 0 0 -1

⇒

� · · · 4 3 2 1
5 · · · 1 1 1 1
5 · · · 1 1 1 1
3 · · · 1 0 0 1
3 · · · 1 0 0 0
2 · · · 0 1 0 -1
2 · · · 0 0 0 -1

=⇒

� · · · 4 4 3 2 1
4 · · · 1 1 1 1 1
4 · · · 1 1 1 1 1
2 · · · 0 1 0 0 1
2 · · · 0 1 0 0 0
2 · · · 1 0 1 0 -1
2 · · · 1 0 0 0 -1

⇒

� · · · 1 4 4 3 2 1
3 · · · 1 1 1 1 1 1
3 · · · 1 1 1 1 1 1
2 · · · 0 0 1 0 0 1
2 · · · 0 0 1 0 0 0
1 · · · -1 1 0 1 0 -1
1 · · · 0 1 0 0 0 -1

⇒

� · · · 5 1 4 4 3 2 1
2 · · · 1 1 1 1 1 1 1
2 · · · 1 1 1 1 1 1 1
2 · · · 1 0 0 1 0 0 1
2 · · · 1 0 0 1 0 0 0
2 · · · 1 -1 1 0 1 0 -1
1 · · · 0 0 1 0 0 0 -1

⇒

� 6 5 1 4 4 3 2 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 0 0 1
1 1 1 0 0 1 0 0 0
1 1 1 -1 1 0 1 0 -1
1 1 0 0 1 0 0 0 -1

⇒

� 6 5 1 4 4 3 2 1
0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 1 1 0 0 1 0 0 1
0 1 1 0 0 1 0 0 0
0 1 1 -1 1 0 1 0 -1
0 1 0 0 1 0 0 0 -1

TABLE IV

Specifically, the supply profile is specified in the first row
of the table, while the remaining demand profile is specified

in the first column. The allocation process is demonstrated by
the (−1, 0, 1)-matrices in the right bottom corner. Note that
we have not explicitly specified the loads charged through
peer-to-peer charging. In fact, at a specific time slot, every
load in the charging state can be a candidate charged by the
loads in the discharging state.

It is worth mentioning that the supply and demand profiles
in the above example do not satisfy the majorization condi-
tion as in [14], [21]. That is to say, the supply profile h =
[6 5 1 4 4 3 2 1]′ is inadequate to meet the demand profile
r = [8 8 4 3 2 1]′, if the peer-to-peer charging functionality
is not allowed. This echoes the motivating question raised
in the beginning of this paper. The introduction of peer-to-
peer charging does bring in a new advantage. It enlarges the
set of adequate supply profiles and thus eases the use of the
renewable generation.

Example 3: Consider an example related to an inadequate
supply profile. Suppose the power is delivered over six
time slots and there are five flexible loads. The supply
profile is h = [5 2 1 1 2 1]′ and the demand profile is
r = [6 6 3 1 1]′. The following table shows the process of
implementation of Algorithm 2. The algorithm produces a
feasible supplementary purchase vector p = [0 3 1 1 0 0]′

that achieves the adequacy gap g = 5.

� · · · 1
6 · · · 1
6 · · · 1
3 · · · 1
1 · · · -1
1 · · · -1

=⇒

� · · · 2 1
5 · · · 1 1
5 · · · 1 1
2 · · · 0 1
2 · · · 0 -1
2 · · · 0 -1

=⇒

� · · · 1 2 1
4 · · · 0 1 1
4 · · · 1 1 1
2 · · · 0 0 1
2 · · · 0 0 -1
2 · · · 0 0 -1

⇒

� · · · 1 2 1
4 · · · 0 1 1
4 · · · 1 1 1
2 · · · 0 0 1
2 · · · 0 0 -1
2 · · · 0 0 -1

=⇒

� · · · 2 2 1
4 · · · 1 1 1
4 · · · 1 1 1
2 · · · 0 0 1
2 · · · 0 0 -1
2 · · · 0 0 -1

⇒

� · · · 1 2 2 1
3 · · · 0 1 1 1
3 · · · 1 1 1 1
2 · · · 0 0 0 1
2 · · · 0 0 0 -1
2 · · · 0 0 0 -1

=⇒

� · · · 2 2 2 1
3 · · · 1 1 1 1
3 · · · 1 1 1 1
2 · · · 0 0 0 1
2 · · · 0 0 0 -1
2 · · · 0 0 0 -1

⇒

� · · · 2 2 2 2 1
2 · · · 0 1 1 1 1
2 · · · 0 1 1 1 1
2 · · · 0 0 0 0 1
2 · · · 1 0 0 0 -1
2 · · · 1 0 0 0 -1

=⇒

� · · · 5 2 2 2 1
2 · · · 1 1 1 1 1
2 · · · 1 1 1 1 1
2 · · · 1 0 0 0 1
2 · · · 1 0 0 0 -1
2 · · · 1 0 0 0 -1

⇒

� 5 5 2 2 2 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 0 0 0 1
1 1 1 0 0 0 -1
1 1 1 0 0 0 -1

=⇒

� 5 5 2 2 2 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 0 0 0 1
0 1 1 0 0 0 -1
0 1 1 0 0 0 -1

TABLE V

As mentioned before, there may be other solutions to the
optimization problem (2) other than the one indicated by our
algorithm. For example, the supplementary purchase vectors



p̃1 = [0 1 1 1 2 0]′ and p̃2 = [0 0 0 1 0 4]′ also achieve the
adequacy gap 5, as shown in the next table.

� 5 3 2 2 4 1
6 1 1 1 1 1 1
6 1 1 1 1 1 1
3 1 1 0 0 0 1
1 1 0 0 0 1 -1
1 1 0 0 0 1 -1

� 5 2 1 2 2 5
6 1 1 1 1 1 1
6 1 1 1 1 1 1
3 1 0 1 0 0 1
1 1 0 -1 0 0 1
1 1 0 -1 0 0 1

TABLE VI

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the peer-to-peer charging to the
duration-differentiated energy services. This new dimension
of load flexility enlarges the set of adequate supply profiles
and, thus, eases the demand/supply balance in a power grid
with high renewables. An algorithm is developed for power
allocation with peer-to-peer charging allowed. Moreover, we
show that the supply profile is adequate if and only if the
algorithm gives a feasible allocation. Numerical examples
are used to illustrate some characteristics of the differentiated
energy services and the effectiveness of our algorithms.

In the future, we wish to explore whether there exists a
causal optimal policy, which is more desirable with regard
to real-time implementations. We shall further examine the
adequacy with the hope of finding an explicit characterization
of the adequate supply profiles. We also wish to design a
market mechanism so as to motivate consumers to involve
themselves in such differentiated energy services.
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