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Abstract— In this paper, we study the stabilization of MIMO
networked control systems over MIMO communication systems.
Here the parallel additive white Gaussian noise subchannels in
the MIMO transceiver are used to express the spatial freedom
of communication. In addition, the number of subchannels in
general can be greater than that of control inputs. The aim
is to find the feasible capacity region rendering stabilization
possible. We also wish to examine how to design the controller
and transceiver jointly. A super-region and a sub-region for the
feasible channel capacity region are obtained which are char-
acterized in terms of two majorization relations, respectively.
The results are demonstrated by numerical examples.

I. INTRODUCTION

Networked control systems (NCSs) have been greatly
investigated due to their wide applications in many areas such
as wireless sensor networks, multi-agent systems, robotics,
unmanned aerial vehicles, distributed computing, etc. They
are feedback systems in which the controller and the plant
are often geographically separated, requiring communication
systems in between for information exchange. The commu-
nication systems can be wired computer networks or wireless
communication networks, transmitting the measurement and
control signals in a shared or dedicated, collaborative or com-
petitive, centralized or distributed manner. These communi-
cation channels have brought great advantages, including low
cost, real-time and flexible remote control and estimation [1],
[2], and some side effects, including quantization errors [3],
[4], packet dropping [5], [6], time delay [7], [8], low signal
to noise ratio (SNR) [9], etc.

The study of NCSs involves tremendous interactions be-
tween control theory, information theory, and communication
theory. It has been well recognized that the classical Shannon
information theory is in general not enough to characterize
the real-time information constraints in a feedback loop. The
research on how to modify the classical information theory
in the context of networked control is still in the beginning
stage. Several preliminary studies have been reported in the
literature, attempting to define suitable capacity notions for
communication channels in a feedback system. For instance,
the work in [10] introduces the notion of anytime capacity,
while the works in [11], [12] suggest the potential of defining
capacity notions from a deterministic point of view. On the
other side of the story, there have been continuing efforts in
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defining an entropy concept for a dynamic system to capture
its complexity, ergodicity, information content, or expansion
rate. Of particular interest to networked control is the metric-
theoretical topological entropy defined in [13]. When applied
to discrete-time linear time-invariant systems, the topological
entropy is simply expressed as the logarithm of the absolute
products of unstable poles of the open-loop system.

Through years of study, researchers have archived a good
understanding of the interplay between the communication
quality and system dynamics for the control of a single-input
system under different information constraints. See [14], [15]
for data rate constraint, [3], [6], [16] for quantization, [9] for
signal-to-noise ratio constraint, and [17] for fading, etc. All
these studies converge to a unified understanding: The single-
input networked stabilization can be accomplished if and
only if the channel capacity is greater than the topological
entropy of the open-loop plant. Such fundamental limitation,
on the other hand, justifies the use of topological entropy as
a measure of the degree of instability of a single-input linear
system, as suggested in [14], [15], [18]. Clearly, the more
unstable a system is, the more communication resource it
requires for stabilization.

Efforts have also been further devoted to examine whether
or not such fundamental limitation on information constraints
can be extended to multi-input networked stabilization. See
for instance [11], [19]–[22]. In particular, the idea of channel
resource allocation has been exploited in [11], [22] in order
to facilitate the multi-input networked stabilization. The key
philosophy is to assume that the channel capacities can be
allocated subject to an overall capacity constraint, leading to
a channel/controller co-design problem. It has been shown
therein that a multi-input NCS can be stabilized if and only
if the total channel capacity is greater than the topological
entropy of the open-loop plant, consistent with the result in
the single-input case.

Note that the channel resource allocation as in [11], [22]
can be interpreted in a more intuitive way. One can consider
the control inputs as the demand side of the communication
resource. What the channel resource allocation does is simply
tailoring the supplies from different channels to match the
demands from different inputs. Then a question arises: What
if the channel capacities are fixed a priori and not allocatable?
Can we exploit some other design freedom to achieve the
balance of demand and supply?

Motivated by this concern, we have recently proposed an
alternative scheme in [23] which does the exact opposite:
shaping the demands to meet the fixed supplies. The demand
shaping is made possible thanks to the coding mechanism in



a MIMO transceiver that is utilized for information exchange
between the controller and the plant. While the continuous-
time NCSs are considered in [23], we in this paper proceed
to investigate the case of discrete-time NCSs. Despite some
parallel results as one would expect, we also observe some
interesting phenomenon that is different from the continuous-
time case. A super-region and a sub-region for the feasible
channel capacity region rendering stabilization possible are
obtained which are characterized by two majorization rela-
tions.

Notation: The super-scripts (·)′ and (·)∗ denote transpose
and complex conjugate transpose, respectively. The symbols
R+ and R++ represent the set of non-negative and positive
numbers, respectively. Here d(X) and λ(X) denote the
vectors constituted by the diagonal elements and eigenvalues
of a Hermitian matrix X in decreasing order, respectively.
The ith diagonal element of a matrix is denoted by {·}ii.
The relation ≤ between two vectors denotes component-
wise less than. The logarithm is assumed to have base 2;
hence, the unit of channel capacity is bits/transmission. Other
notation is more or less standard, and will be made clear as
we proceed.

II. PROBLEM FORMULATION

Consider a discrete-time linear time-invariant system de-
scribed by the state model

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

where x(k) ∈ Rn and u(k) ∈ Rm. The plant is denoted
by [A|B] for simplicity. Assume that [A|B] is unstable
but stabilizable. Also assume that the state vector x(k)
is available for feedback control. A static state feedback
controller is employed with the state feedback gain F ∈
Rm×n. The control signal v(k) = Fx(k) is sent through a
communication network to the plant actuators. The closed-
loop feedback system is now depicted in Fig. 1 (a).
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Fig. 1. (a) State feedback via a communication channel. (b) The AWGN
channel model. (c) NCS – control over a communication system.

How to model the communication channels is a big issue
in networked control. As a starting point, we consider the

parallel AWGN channels, as shown in Fig. 1 (b). Let l denote
the total number of subchannels, and assume that l ≥ m, i.e.,
the number of subchannels can be greater than the number
of control inputs. The input signal of the channel is s ∈ Rl,
and the output signal q ∈ Rl is given by q = s+ d, where d
is the Gaussian noise vector, with zero mean and covariance
Σ2 = diag{σ2

1 , σ
2
2 , . . . , σ

2
l }. To mitigate the distortion caused

by the channel noise, a transmitter T ∈ Rl×m and a receiver
R ∈ Rm×l are to be designed subject to a mild constraint:

RT = I.

Thus, the control signal received at the plant input can be
expressed as

u(k) = v(k) +Rd(k).

The integrated networked control system, consisting of two
MIMO sub-systems, MIMO control and MIMO communica-
tion, and three physical objects, controller, transceiver, and
plant, is depicted in Fig. 1 (c).

When the whole control-communication system is oper-
ated in closed-loop mode, the transfer function from the noise
d to the signal s is the complementary sensitivity function

T (z) = TF (zI −A−BRTF )−1BR.

The power spectrum of si is given by {T (ejω)Σ2T (ejω)∗}ii
and the mean power of si is

Pi =
1

2π

∫ 2π

0

{
T (ejω)Σ2T (ejω)∗

}
ii
dω.

Thus the SNR of the ith channel can be represented by

Si =
1

2π

∫ 2π

0

{
T (ejω)Σ2T (ejω)∗

}
ii
dω

σ2
i

=
1

2π

∫ 2π

0

{
Σ−1T (ejω)Σ2T (ejω)∗Σ−1

}
ii
dω.

Consequently, the corresponding ith channel capacity, from
the Shannon information theory[24], can be expressed as

Ci=
1

2
log

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

,

yielding the total channel capacity

Ctotal =C1 + · · ·+ Cl

=
1

2
log

l∏
i=1

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

.

Here, we are interested in not only the total channel
capacity Ctotal required for stabilization, but also the indi-
vidual channel capacity and potential trade-offs between the
individual channel capacities. Here we borrow the notion
of channel capacity region from network information theory
[25]. Let S =

[
S1 . . . Sl

]′
denote the channel SNR

vector and C =
[
C1 · · · Cl

]′
∈ Rl denote the channel

capacity vector. The set of all channel capacity vectors that
render networked stabilization possible is referred to as the
feasible channel capacity region. The ultimate objective is to
find a full characterization of such feasible channel capacity



region. As a starting point, a super-region and a sub-region
for the feasible channel capacity region are obtained which
are characterized by two majorization type relations.

Besides the characterization of feasible channel capacity
region, we are also interested in the co-design of the con-
troller and transceiver. Given a feasible capacity vector, how
to design the controller and the transceiver cooperatively so
as to stabilize the system? This will be answered as we go
along.

III. PRELIMINARIES

A. Mahler measure and topological entropy

The Mahler measure of a matrix A ∈ Rn×n, denoted by
M(A), is defined as the product of the absolute value of its
unstable eigenvalues, i.e., M(A) =

∏n
i=1 max{1, |λi(A)|}.

The topological entropy [26] of A, denoted by H(A), is
simply the logarithm of M(A), i.e., H(A) = logM(A).
Clearly, we have M(A) ≥ 1 and H(A) ≥ 0. These two
concepts have been studied in mathematics and dynamical
system theory for a long time. Recently it has received
considerable attention in the control literature in the study
of information theoretical limitations in networked control
[14], [15], [18], [27].

B. Majorization theory

For any vector x =
[
x1 . . . xn

]′ ∈ Rn, let x↓ =[
x[1] . . . x[n]

]′
denote the rearranged version of x such

that the elements are in non-increasing order. Similarly, let
x↑ =

[
x(1) . . . x(n)

]′
denote the rearranged version of x

such that the elements are in non-decreasing order.
Definition 1: For two vectors x, y ∈ Rn, we say that x is

majorized by y, denoted by x 4 y, if
k∑
i=1

x[i] ≤
k∑
i=1

y[i], for k = 1, . . . , n− 1,

n∑
i=1

x[i] =

n∑
i=1

y[i],

(1)

or equivalently,
k∑
i=1

x(i) ≥
k∑
i=1

y(i), for k = 1, . . . , n− 1,

n∑
i=1

x(i) =

n∑
i=1

y(i).

(2)

When the last equality in (1) is replaced by inequality ≤,
x is said to be weakly majorized by y from below, denoted
by x 4w y. Similarly, if we replace the last equality in (2)
by inequality ≥, x is said to be weakly majorized by y from
above, denoted by x 4w y.

Majorization, defined as above, is based on partial sums.
We also need the so-called log-majorization for later use
which is defined in a multiplicative manner.

Definition 2: For x, y ∈ Rn+, we say that x is log-
majorized by y, denoted by x 4log y, if

k∏
i=1

x[i] ≤
k∏
i=1

y[i], for k = 1, . . . , n− 1,

n∏
i=1

x[i] =

n∏
i=1

y[i],

(3)

or equivalently,
k∏
i=1

x(i) ≥
k∏
i=1

y(i), for k = 1, . . . , n− 1,

n∏
i=1

x(i) =

n∏
i=1

y(i).

(4)

Again, when the last equality in (3) is replaced by inequality
≤, x is said to be weakly log-majorized by y from below,
denoted by x 4w log y. Similarly, when the last inequality
in (4) is replaced by inequality ≥, x is said to be weakly
log-majorized by y from above, denoted by x 4w log y. In
particular, if x, y ∈ Rn++, then x4w log y and x4w log y are
equivalent to log x4w log y, and log x4w log y, respectively.

The following lemmas would be very useful in later
developments.

Lemma 1 ([28]): There exists a real symmetric matrix X
with eigenvalues λ = [λ1 · · · λn]′, and diagonal elements
d = [d1 · · · dn]′, if and only if d 4 λ.

Lemma 2 ([28]): Let X be an n×n positive semi-definite
Hermitian matrix with diagonal elements d = [d1 · · · dn]′

and eigenvalues λ = [λ1 · · · λn]′, then we have d 4w log λ.

C. Cyclic decomposition

Let A be an n × n real matrix. The minimal polynomial
of A is the monic polynomial α(λ) of least degree such that
α(A) = 0. It is unique, and is a factor of the characteristic
polynomial of A. Generally speaking, the degree of the
minimal polynomial is less than or equal to n. If the degree
of the minimal polynomial is indeed n, we say the matrix is
cyclic. In this case, the minimal polynomial coincides with
the characteristic polynomial.

For a given real square matrix, one can always carry out
a cyclic decomposition. When applied to linear dynamical
system, this leads to a cyclic decomposition of the system,
as shown in the following lemma.

Lemma 3 ([29]): Given a stabilizable linear system [A|B]
with A ∈ Rn×n and B ∈ Rn×m. Let the monic polynomial
of A be α. Then there exists a nonsingular matrix V ∈ Rn×n
and Q ∈ Rm×m such that [A|B] can be transformed into

[V −1AV |V −1BQ]

=



A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak



b1 ∗ · · · ∗ ∗

0 b2
. . .

...
...

...
. . . . . . ∗ ∗

0 · · · 0 bk ∗


 ,

where Ai, i = 1, 2, . . . , k, are cyclic with minimal polyno-
mials αi(λ), such that α1(λ) = α(λ) and αi+1(λ)|αi(λ)



for i = 1, 2, . . . , k − 1. Moreover, the cyclic subsystems
[Ai|bi], i = 1, 2, . . . , k, are stabilizable.

An interesting implication from the above lemma is that
Spec(A1) ⊃ · · · ⊃ Spec(Ak) and, thus, H(A1) ≥ · · · ≥
H(Ak), where Spec(Ai) denotes the spectrum of Ai.

IV. A SUPER-REGION AND A SUB-REGION OF FEASIBLE
CHANNEL CAPACITY REGION

In this section, we will derive a super-region and a sub-
region of the feasible channel capacity region, respectively.

Firstly, we will present the super-region. Denote

H(A) =
[
H(A1) · · · H(Ak) 0 · · · 0

]′ ∈ Rl,
M(A) =

[
M(A1) · · · M(Ak) 1 · · · 1

]′ ∈ Rl.

Hereinafter, by applying a scalar function f to a vector
x ∈ Rn, we mean

f(x) = [f(x1) · · · f(xn)]′.

The following theorem gives a super-region of the feasible
channel capacity region. The proof is omitted here due to the
page limit.

Theorem 1: If C lies in the feasible capacity region, there
holds C 4w H(A), or equivalently, 1 + S 4w log M(A)2.

A corollary follows directly from Theorem 1.
Corollary 1: If C lies in the feasible capacity region, then

Ctotal ≥ H(A).
In what follows, we will focus on the sub-region. The

result is stated in the following theorem. The proof is
constructive and gives a guideline for the joint design of
the controller and the transceiver.

Theorem 2: A sub-region of the feasible capacity region
for design is 22C̄4ω 22H(A), or equivalently, S̄4ωM(A)2−1.

Proof: For brevity, assume that all the eigenvalues of
A lie in outside of the unit circle. This assumption can be
removed following the same arguments as in [9], [11].

We need to design a controller F , a transmitter T , and
a receiver R so that the NCS is stabilized, simultaneously
requiring that the actual SNR S satifies S ≤ S̄.

From [28], we know that if S̄ 4ωM(A)2− 1, then there
exists some vector w ≤ S̄, w 4M(A)2−1. Then let S = w;
hence we use S afterwards.

Furthermore, without loss of generality, assume that the
system [A|B] has been decomposed into the cyclic canonical
form, in which each subsystem [Ai|bi], i = 1, . . . , k is
controllable with state dimension ni,

∑n
i=1 ni = n.

For each subsystem [Ai|bi], which is a single input system
and we can design a stabilizing state feedback controller fi
such that ‖Ti(z)‖22 = M(Ai)

2 − 1 [9], with the transfer
function,

Ti(z) = fi(zI −Ai − bifi)−1bi.

The controller fi is an H2 controller. Then we let the
controller F be

F =

[
f

0(m−k)×n

]
,

where f = diag{f1, f2, . . . , fk}.

Then we can design the transmitter as

T = ΣUD−1,

and the receiver as

R = DU ′Σ−1,

where Σ is the given noise variance matrix, U ∈ Rl×m
is an isometry matrix, i.e., U ′U = Im, and D =
diag{1, ε, . . . , εm−1} is a scaling matrix. The matrix U needs
to be designed and the small scaling factor ε needs to be
chosen so that S ≤ S̄ is satisfied.

Let matrix V = diag{In1
, εIn2

, . . . , εk−1Ink
}. Then the

transfer function from noise d to channel input signal s can
be written as

T (z) = TF (zI −A−BF )−1BR

= ΣUD−1F (zI −A−BF )−1BDU ′Σ−1

= ΣUD−1FV (zI − V −1AV−
V −1BDD−1FV )−1V −1BDU ′Σ−1

= ΣUF̂ (zI − Â− B̂F̂ )−1B̂U ′Σ−1,

where

F̂ = D−1FV = F,

Â = V −1AV =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak

 ,

B̂ = V −1BD =


b1 o(ε) · · · o(ε) o(ε)

0 b2
. . .

...
...

...
. . . . . . o(ε) o(ε)

0 · · · 0 bk o(ε)

 ,
and o(ε)/ε approaches to a finite constant as ε → 0. Then
we have

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

= UF̂ (zI − Â− B̂F̂ )−1B̂B̂′(zI − Â− B̂F̂ )−1∗ F̂ ′U ′

= U(diag{‖T1(z)‖22, . . . , ‖Tk(z)‖22, 0, . . . , 0})U ′+o(ε)UU ′

= U
(
diag{M(A1)2 − 1, . . . ,M(Ak)2 − 1, 0, . . . , 0}

)
U ′

+ o(ε)UU ′.
(5)

Since
S 4M(A)2 − 1,

by lemma 1, there exists an isometry matrix U such that

Si =

{U(diag{M(A1)2 − 1, . . . ,M(Ak)2 − 1, 0, . . . , 0})U ′}ii
for i = 1, . . . , l. Furthermore, let the ε in (5) be sufficiently
small, then the result can be obtained. We can use the same
approach for the power vector. And the structure of the
transceiver can be shown as in Fig. 2.
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Fig. 2. Controller and transceiver structure.

Using the relations, 1 + S̄ = 22C̄ and M(A)2 = 22H(A),
we have 1 + S̄ 4ωM(A)2, that is, S̄ 4ωM(A)2− 1. Then
from above, we can design the controller and receiver so that
the actual SNR vector S ≤ S̄, implying C ≤ C̄ with the same
controller and transceiver. This finishes the proof.

V. NUMERICAL EXAMPLE

An example is worked out in this section for illustration.
Consider an unstable system [A|B] with

A =

 4 0 0
0 2 0
0 0 2

 , B =

 1 1
1 1
0 1

 .
There are two cyclic subsystems:

[A1|b1] =

[ [
4 0
0 2

] [
1
1

] ]
, [A2|b2] = [ 2 1 ].

The Mahler measure is given by M(A) =
[
8 2

]′
, and the

topological entropy is given by H(A) =
[
3 1

]′
.

Consider the case when there are 6 subchannels with
channel capacity vector being

C̄ =
[
2.01 2.01 2.01 2.01 1.01 1.01

]′
.

Note that there are no subchannels with capacity greater
than H(A1) and, thus, no single channel has enough ca-
pacity to stable [A1|b1]. Nevertheless, one can verify that
22C̄ 4w M(A)2, where M(A) =

[
8 2 1 1 1 1

]′
is

the augmented Mahler measure. Then we can jointly design
the controller and transceiver to stabilize the NCS.

To obtain the controller, we need to solve the H2 optimal
control problem for each cyclic subsystem. The optimal H2

controller for [A1|b1] is f1 =
[
−6.5625 1.3125

]′
and that

for [A2|b2] is f2 = −0.5. Then design

F = diag{f1, f2} =

[
−6.5625 1.3125 0

0 0 −0.5

]
.

One can verify that the closed-loop poles, i.e., the eigen-
values of A+BF , are given by {0.25, 0.5, 0.5} , which are
exactly the mirror images of the open-loop poles with respect
to the unit circle.

Regarding the transceiver design, we choose the isometry
matrix U and the scaling matrix D:

U =


0.4851 0.2425
0.4472 −0.8944
0.4851 0.2425
0.4851 0.2425
0.2169 0.1085
0.2169 0.1085

 , D =

[
1 0
0 0.1

]
.

The actual channel capacity is now given by

C=
[
2.0025 2.0009 2.0025 2.0025 1.0018 1.0018

]′
,

which satisfies the constraint.

VI. CONCLUSION

In this paper, we investigate the networked stabilization of
a multi-input system over a MIMO communication system.
The MIMO communication system consists of a cascade of
a transmitter, a collection of subchannels, and a receiver.
The number of subchannels in the transceiver can be greater
than the number of the control inputs. The transmitter and
receiver can be freely designed subject to a mild constraint,
leading to a joint design problem of the controller and the
transceiver.

We wish to reveal a fundamental limitation on information
constraints required for multi-input networked stabilization.
At this stage, a super-region and a sub-region of the feasible
channel capacity region are obtained which are characterized
in terms of two majorization type relations, respectively. The
majorization relations connect the subchannel capacity vector
with the system topological entropy vector. To some extent,
this also suggests the use of the topological entropy vector
as a measure of the structured instability in a multi-input
linear system. A full characterization of the feasible channel
capacity region rendering stabilization possible is still under
our current investigation.
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