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Abstract— In this paper, the Linear Quadratic Gaussian
(LQG) control of linear time invariant (LTI) systems with
random input and output gains is studied. One main novelty of
this work is that we study the problem under the framework of
channel/controller co-design which allows the control designer
to have the additional freedom to design the communication
channels. With the channel/controller co-design, the optimal
control problem studied is feasible if and only if the system
is mean-square stabilizable and detectable. Moreover, we show
that the separation principle partially holds under the TCP-
like protocols. The optimal controller is an estimated state
feedback, combining the optimal state feedback design and the
optimal state estimation design. However, there exists certain
asymmetry. The optimal state feedback gain does not depend on
the estimator design, while the optimal estimator does depend
on the optimal state feedback gain.

Keywords: Networked control system, LQG control,
stochastic systems, channel/controller co-design, channel
resource allocation.

I. INTRODUCTION

The LTI systems with random gains, which are a specific
type of stochastic control systems, have attracted much
attention recently. They have wide range of applications in
many areas, including networked control systems (NCSs) [7],
[16], [13], economic stability [10], and financial engineering
[19], etc. One can refer to [5], [17] and the references therein
for a general study of the stochastic control systems.

What we concern in this work is the LQG control of LTI
systems with random gains imposed on the control input
and measurement output, respectively. Better results can be
obtained for this specific type of systems compared to the
study on the general stochastic systems. Below we partially
review some results that are pertinent to our work in this
paper, mainly in the context of NCSs. For convenience, we
name the channels through which the plant output is sent to
the controller as the output channels and the channels through
which the controller output is sent to the plant as the input
channels. The work in [7] considers the LQG control with
packet dropping in the output channels. There it is shown that
the separation principle holds under the TCP-like protocols.
In [13], [8], the LQG control of a multi-input-multi-output
(MIMO) system with a single packet dropping input channel
and a single packet dropping output channel is considered.
The authors point out that under the TCP-like protocols, the
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optimal LQG control is a linear function of the estimated
state and depends on the packet dropping probabilities.

Researchers have also studied the LQG control over
multiple parallel communication channels for MIMO NCSs.
One such example can be seen in [4]. The objective there
is finding the optimal controller for a given set of packet
dropping probabilities. The separation principle is shown to
hold under the TCP-like protocols and the optimal control
law is obtained in the finite-horizon case. For the infinite-
horizon case, a sufficient condition on the stability of the
closed-loop system is given by a set of linear matrix
inequalities (LMIs).

Inspired by the above results, we further study the LQG
control of LTI systems with random input and output gains
in this paper. Different from the setting in [4], we put the
problem under the framework of channel/controller co-design
which is one main novelty of this paper. We assume that
the controller designer also has the freedom to participate in
the channel design. Due to this additional design freedom,
the objective now becomes to simultaneously design the
controller and channels such that the cost function is
minimized. By this channel/controller co-design, the problem
can be nicely solved, as elaborated in the rest of this paper.

The framework of channel/controller co-design is first
proposed in [6], which studies the stabilization of multi-
input NCSs with the signal-to-error ratio (SER) channel
model. The work in [6] is extended in [11] where a more
complete study is carried out on stabilization of multi-
input NCSs for three different channel models. Several other
works [3], [15], [16], [18] have been carried out following
this framework. In particular, the work in [18], which is
most related to this paper, investigates the Linear Quadratic
Regulator (LQR) problem of LTI systems with random input
gains. By channel/controller co-design, the LQR problem is
shown to be solvable if and only if the overall input channel
capacity is greater than the topological entropy of the plant.

The remainder of this paper is organized as follows. The
problem is formulated and some concepts, especially the
channel/controller co-design framework are introduced in
Section II. The mean-square stabilizability and detectability
are discussed in Section III. The optimal estimator is derived
in Section IV. Section V first solves the finite-horizon
LQG control problem by dynamic programming and then
investigates the convergence issue in the infinite-horizon
case under the framework of channel/controller co-design.
Conclusions follow in Section VI. Some proofs in this paper
are presented in the Appendix.

Most notations in this paper are more or less standard
and will be made clear as we proceed. The symbol⊙means



Hadamard product. The identity under Hadamard product,
denoted by E, is a matrix with all elements equal to 1.

II. PROBLEM FORMULATION

The setup of the feedback system studied in this work is
shown in Fig. 1.
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Fig. 1. LTI systems with random input and output gains.

Consider the following general LTI plant:

x(k + 1) = Ax(k) +B1w(k) +B2u(k),

z(k) = C1x(k) +D12u(k),

y(k) = C2x(k) +D21w(k),

where x(k) ∈ Rn is the plant state, w(k) ∈ Rm̃ is a
zero-mean white noise with covariance E[w(k)w(l)′] =
Iδkl, u(k) ∈ Rm is the control input, z(k) ∈ Rp̃ is the
performance output and y(k) ∈ Rp is the measurement
output. Let x(0) be Gaussian with zero mean and variance

Y0. We denote the plant by

 A B1 B2

C1 0 D12

C2 D21 0

 for

simplicity. Assume that A is unstable, [A|B2] is stabilizable

and
[

A
C2

]
is detectable. Also assume that

[
B2

D12

]
has full

column rank and
[
C2 D21

]
has full row rank. Different

from the setup of a traditional output feedback control
system, two random gain matrices κI(k), κO(k) are imposed
on the control input and measurement output, respectively,
i.e., u(k) = κI(k)v(k), q(k) = κO(k)y(k). In the sequel, we
use subscript I to refer to the input channels and subscript
O to refer to the output channels. In many applications,
especially those in NCSs and distributed systems, very often
the actuators are located far from each other. Thus, here
we assume that each componet of the control signal is sent
through an independent communication channel. Motivated
by the wireless transmission largely used in practice, we
model κI(k) = diag{κI1(k), κI2(k), . . . , κIm(k)}, where
κIi(k), i = 1, 2, . . . ,m are i.i.d white noise processes with
means µIi and variances σ2

Ii
, respectively. Similarly, κO(k)

is modeld as κO(k) = diag{κO1(k), κO2(k), . . . , κOp(k)},
where κOj (k), i = 1, 2, . . . , p are i.i.d white noise processes
with means µOj and variances σ2

Oj
, respectively. Note

that there exists feedback of the outcome of κI(k) to

the controller K. This is reasonable and can be achieved
by some TCP-like communication protocols. However, we
do not require that the controller knows the outcome of
κO(k), which is different from the setting in most current
literature [14], [13], [4].

Some notations with respect to the input and output
channels are defined below. First, we define the signal-to-
noise ratio in the ith input channel, denoted as SNRIi , to be
the ratio

µIi

σIi

. Denote

MI , diag{µI1 , µI2 , . . . , µIm},
Σ2

I , diag{σ2
I1 , σ

2
I2 , . . . , σ

2
Im},

WI , E+M−2
I Σ2

I

=


1+SNR−2

I1
1 · · · 1

1 1+SNR−2
I2

. . .
...

...
. . . . . . 1

1 · · · 1 1+SNR−2
Im

 .

The mean-square capacity of the ith input channel is [15]:

CIi ,
1

2
log(1+

µ2
Ii

σ2
Ii

) =
1

2
log(1+SNR2

Ii).

The overall mean-square capacity of the input channels is
given by CI =

∑m
i=1 CIi . For the output channels, we can

correspondingly define the signal-to-noise ratio SNROj , j =
1, 2, . . . , p, the matrices MO,Σ

2
O,WO, the mean-square

capacity of the jth output channel COj and the overall mean-
square capacity of the output channels CO.

We study the LQG control problem with random gains.
The purpose is to design a dynamic controller K to minimize

lim
k→∞

E[z(k)′z(k)]

= lim
k→∞

E

[[
x(k)

κI(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

κI(k)v(k)

]]
,

where
[
Q S
S′ R

]
,

[
C ′

1

D′
12

] [
C1 D12

]
. Notice that here K is

not an LTI system with input q(k) and output v(k). Instead,
it is a linear parameter-varying (LPV) system depending on
κI(k). One traditional way to deal with this problem is to
fix the channel capacities CIi ,COj a priori and then find
the optimal K to minimize limk→∞ E[z(k)′z(k)]. However,
under this formulation, the problem is not always feasible for
any given set of channel capacities.

To tackle this difficulty, the channel/controller co-design
framework provides a significant insight, which is the main
novelty of this work. The channel capacities are often
closely related to certain physical resource available, e.g.,
transmission power or communication bandwidth, which can
be allocated among different channels. Considering this,
we assume that the individual input channel capacities CIi

and output channel capacities COj are not given a priori.
Instead, they can be designed, or allocated under the overall
constraints on CI and CO. The allocation of the overall



capacity to the individual channels, called channel resource
allocation, can be formally given by two probability vectors

πI =
[
πI1 πI2 . . . πIm

]′
,

πO =
[
πO1 πO2 . . . πOp

]′
,

where 0 ≤ πIi ≤ 1,
∑m

i=1 πIi = 1, 0 ≤ πOj ≤ 1,∑p
j=1 πOj = 1, such that CIi = πIiCI , COj = πOjCO.

With the channel/controller co-design, our problem becomes
to simultaneously design the probability vectors πI , πO and
the optimal controller K to minimize limk→∞ E[z(k)′z(k)].
Thanks to the additional design freedom given by the channel
resource allocation, the problem can be nicely solved. It is
shown that the separation principle partially holds under the
TCP-like protocols. On one hand, the optimal controller is
still an estimated state feedback, combining the optimal state
feedback design and the optimal state estimation design. On
the other hand, although the optimal state feedback gain does
not depend on the estimator design, the optimal estimator
does depend on the optimal state feedback gain.

Before proceeding, recall that the topological entropy [2]
of a matrix A ∈ Rn×n is given by h(A) =

∑
|λi|>1 log |λi|,

where λi are the eigenvalues of A.

III. MEAN-SQUARE STABILIZABILITY AND
DETECTABILITY

In this section, the concepts of mean-square stabilizability
and detectability are introduced. First, we consider the
state feedback stabilization of [A|B2] with the random gain
κI(k) imposed on the input. Given an overall input channel
capacity CI , we want to design an allocation πI and a state
feedback gain F such that the closed-loop networked system

x(k+1) = (A+B2κI(k)F )x(k), (1)

is mean-square stable, i.e., for any initial state x(0),
V (k) , E[x(k)x′(k)] is well-defined for any k > 0 and
limk→∞ V (k) = 0.

Definition 1: [A|B2] is said to be mean-square stabilizable
with capacity CI if there is an allocation πI and a feedback
gain F such that the closed-loop networked system (1) with
CIi = πIiCI is mean-square stable.

When CI = ∞, this definition reduces to the classical
stabilizabilty. The following lemma is shown in [15], [16].

Lemma 1: The following assertions are equivalent:
(a) [A|B2] is mean-square stabilizable with capacity CI .
(b) There exist an allocation πI , a feedback gain F and a

matrix V > 0 such that

(A+B2MIF )V (A+B2MIF )′−V

+B2[Σ
2
I ⊙ (FV F ′)]B′

2 < 0.

In this case, F is mean-square stabilizing.
(c) CI > h(A).

One may expect that the mean-square detectability can be
exactly defined in a dual way, as in the traditional control
theory. However, this is not true mainly due to the fact that
the outcome of κO(k) is not known to the estimator. We

consider the system
[

A B2

C2 0

]
with κI(k) imposed on

the input and κO(k) imposed on the output. The necessity of
introducing the control input to form a closed-loop system
will be appreciated more as we proceed.

As in the traditional case, we attempt to use the Leunberg-
er observer architecture but in a slightly different way:

x̂(k+1)=Ax̂(k)+K(κO(k)y(k)−MOC2x̂(k))+B2κI(k)v(k).

Denote e(k) , x(k)−x̂(k), Y (k) , E[e(k)e(k)′], V (k) ,
E[x(k)x′(k)], V̂ (k) , x̂(k)x̂(k)′, then

e(k+1)=(A−KMOC2)e(k)−K(κO(k)−MO)C2x(k),

Y (k+1)=(A−KMOC2)Y (k)(A−KMOC2)
′

+K[Σ2
O ⊙ (C2V (k)C ′

2)]K
′.

In view of the above equation, since A is unstable, if no
control v(k) is applied, Y (k) goes to infinity when CO < ∞
since V (k) goes to infinity. Therefore, it makes more sense
to introduce the control signal which is an estimated state
feedback, i.e., v(k) = Fx̂(k). Apparently, we assume that
F is mean-square stabilizing with CI . For the closed-loop
system, it is easy to verify that V (k)= Y (k)+V̂ (k) and

(A+B2MIF )V̂ (k)(A+B2MIF )′−V̂ (k+1)

+B2[Σ
2
I ⊙ (FV̂ (k)F ′)]B′

2+AY (k)A′−Y (k+1) = 0.

Then, for given feasible allocation πI and mean-square
stabilizing F , it is possible to design an allocation πO and an
innovation injection matrix K such that limk→∞ Y (k) = 0.

Definition 2: Given feasible input capacity allocation πI

and mean-square stabilizing F ,
[

A B2

C2 0

]
is said to be

mean-square detectable with capacity CO if there exist an
allocation πO and an innovation injection matrix K such
that limk→∞ Y (k) = 0 for all initial error covariance Y (0).

When CO = ∞, this definition reduces to the classical
detectability. The lemma below gives a necessary and
sufficient condition on the mean-square detectability.

Lemma 2: The following assertions are equivalent:
(a) Given feasible πI and mean-square stabilizing F ,[

A B2

C2 0

]
is mean-square detectable with capacity

CO.
(b) There exist an allocation πO, an innovation injection

matrix K and two matrices Y > 0, V̂ ≥ 0 such that

(A−KMOC2)Y (A−KMOC2)
′−Y

+K[Σ2
O ⊙ (C2(Y +V̂ )C ′

2)]K
′ < 0

(A+B2MIF )V̂ (A+B2MIF )′−V̂

+B2[Σ
2
I ⊙ (FV̂ F ′)]B′

2+AY A′−Y = 0.
Lemma 2 can be proved analogously to Lemma 1 with the

same Lyapunov function based approach in [16]. Comparing
the mean-square stabilizability and detectability, we have
some taste of the asymmetry between these two concepts.
The mean-square stabilizability can be studied with no
concern on the estimation issue, while the study of the mean-
square detectability takes advantage of the feedback of the



control signal which helps to make the error covariance
converge. Due to this asymmetry, the minimum total output
channel capacity CO required for mean-square detectability
is more difficult to find. In view of Lemma 1 (c), one thing
for sure is the necessity of CO > h(A). However, at this
stage, no exact closed-form solution on the minimal CO

has been obtained. Numerically, it can be solved by convex
optimization technique in a similar way to that in [16].

IV. OPTIMAL ESTIMATOR

This section is to derive the optimal state estimator
under the TCP-like protocols. The objective is to find an
estimate which is linear in the noise-corrupted measurement
q(0), q(1), . . . , q(k), such that the error covariance is mini-
mized. A similar estimation problem is studied in [12] for
the case when p = 1. Let I(k) be the information set

{q(0), . . . , q(k), v(0), . . . , v(k−1), κI(0), . . . , κI(k−1)}.

With a little abuse of notation, denote x̂(k) , E[x(k)|I(k)],
e(k) , x(k)−x̂(k), Y (k) , E[e(k)e(k)′|I(k)] and V (k) ,
E[x(k)x(k)′|I(k)], V̂ (k) , x̂(k)x̂(k)′. Before proceeding,
we state several useful facts.

Lemma 3: The following statements hold:

(a) E[e(k)x̂(k)′] = 0,
(b) V (k) = Y (k) + V̂ (k),
(c) E[x(k)′Tx(k)]= x̂(k)′T x̂(k)+tr(TY (k)), ∀T ≥ 0.

The proof of Lemma 3 is presented in the Appendix.
To derive the optimal estimator, the innovation process,

which is a white sequence obtained by a causal, linear,
and causally invertible operation on the sequence q(k), is

quite important. Denote
[
P T
T ′ H

]
,

[
B1

D21

] [
B′

1 D′
21

]
.

The innovation process η(k) for the problem at hand is given
in the following lemma.

Lemma 4: The innovation process is given by
η(k) = q(k)−MOC2x̂(k) with zero mean and covariance
E[η(k)η(l)′]=Rη(k)δkl, where

Rη(k) =MO(C2Y (k)C ′
2+H)MO

+Σ2
O ⊙ (C2Y (k)C ′

2+H+C2V̂ (k)C ′
2).

Lemma 4 can be proved by some straightforward compu-
tations and using Lemma 3 (b). The details of the proof are
presented in the Appendix. With the innovation process η(k),
following a similar argument as in [9], the optimal estimator
under the TCP-like protocols admits the form

x̂(k+1) =Ax̂(k)+K(k)η(k)+B2κI(k)v(k) (2)
=Ax̂(k)+K(k)MOC2e(k)

+K(k)κO(k)D21w(k)+B2κI(k)v(k)

+K(k)(κO(k)−MO)C2x(k).

Then

e(k+1)=(A−K(k)MOC2)e(k)+[B1−K(k)κO(k)D21]w(k)

−K(k)(κO(k)−MO)C2x(k),

Y (k+1)=

[
I

M ′
OK(k)′

]′[
AY (k)A′+P −(AY (k)C ′

2+T )
−(C2Y (k)A′+T ′) M−1

O Rη(k)M
−1
O

]
·
[

I
M ′

OK(k)′

]
.

By completing the squares, the optimal K(k) minimizing
Y (k+1) is given by

K(k)=(AY (k)C ′
2+T )[WO⊙(C2Y (k)C ′

2+H) (3)

+(WO−E)⊙(C2V̂ (k)C ′
2)]

−1M−1
O .

Substituting (3) into the expression of Y (k+1) yields the
following iterative function:

Y(k+1)=AY (k)A′+P−(AY (k)C ′
2+T ) (4)

·[WO⊙(C2Y (k)C ′
2+H)

+(WO−E)⊙(C2V̂ (k)C ′
2)]

−1(C2Y (k)A′+T ′).

The initial condition for the estimator iteration is x̂(0) = 0,
Y (0) = Y0.

V. LQG CONTROLLER

In the standard LQG control problem, the solution to the
infinite-horizon LQG control is obtained by taking the limit
of the finite-horizon result as the horizon length goes to
infinity. Similarly, here we first study the finite-horizon LQG
control with random input and output gains, then investigate
the convergence issue when taking the limit to infinity. We
want to stress that the study on the infinite-horizon case is
the main concern of this paper, where the channel/controller
co-design contributes to obtain the convergence condition.

A. Finite-horizon case

In the finite-horizon case, we consider the following cost
function for N steps:

J(N)=E

[
N∑

k=0

[
x(k)

κI(k)v(k)

]′[
Q S
S′ R

][
x(k)

κI(k)v(k)

]∣∣∣∣I(N)

]
,

where v(N) = 0. The objective is to find the optimal control
sequence v(0), v(1), . . . , v(N−1) to minimize J(N). To this
end, the dynamic programming is used. Define the optimal
value function L(k) as

L(N) =E[x(N)′Qx(N)|I(N)],

L(k) =min
v(k)

E

[[
x(k)

κI(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

κI(k)v(k)

]
+ L(k+1)

∣∣I(k)].
By the dynamic programming theory [1], we have J(N)∗ ,
minJ(N) = L(0).

We claim that L(k) has the form

L(k) = E[x(k)′X(k)x(k)|I(k)] + c(k), (5)



where X(k) and c(k) are to be determined. The proof is
carried out by induction. Apparently, the claim is true for
k = N with X(N) = Q, c(N) = 0. Now assume that the
claim is true for k + 1, i.e., L(k+1) = E[x(k+1)′X(k+
1)x(k+1)|I(k+1)]+c(k+1), then

L(k) =min
v(k)

E

[[
x(k)

κI(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

κI(k)v(k)

]
+

[
x(k)

κI(k)v(k)

]′[
A′

B′
2

]
X(k+1)

[
A B2

][ x(k)
κI(k)v(k)

]
+tr(X(k+1)P )+c(k+1)

∣∣∣∣I(k)
]

=min
v(k)

E

[[
x(k)

MIv(k)

]′ [
Q S
S′ R

] [
x(k)

MIv(k)

]
+

[
x(k)

MIv(k)

]′ [
A′

B′
2

]
X(k+1)

[
A B2

] [ x(k)
MIv(k)

]
+v(k)′[Σ2

I ⊙ (B′
2X(k+1)B2+R)]v(k)

+tr(X(k+1)P )+c(k+1)

∣∣∣∣I(k)
]

=min
v(k)

E

[[
x(k)

MIv(k)

]′ [
Z1 Z2

Z ′
2 Z3

] [
x(k)

MIv(k)

]
(6)

+tr(X(k+1)P )+c(k+1)

∣∣∣∣I(k)
]
,

where[
Z1 Z2

Z ′
2 Z3

]
=

[
A′X(k+1)A+Q A′X(k+1)B2+S
B′

2X(k+1)A+S′ WI⊙(B′
2X(k+1)B2+R)

]
.

By completing the squares with respect to v(k), we obtain
the optimal control law vopt(k) = F (k)x̂(k), where

F (k)=−M−1
I Z−1

3 Z ′
2 (7)

=−M−1
I [WI⊙(B′

2X(k+1)B2+R)]−1

· (B′
2X(k+1)A+S′).

Substituting vopt(k) into (6) and using Lemma 3 (c) indicates
that L(k) indeed admits the form in (5), where

X(k)=A′X(k+1)A+Q−(A′X(k+1)B2+S)[WI⊙ (8)

(B′
2X(k+1)B2+R)]−1(B′

2X(k+1)A+S′),

c(k)=tr[(A′X(k+1)A+Q−X(k))Y (k)]

+tr(X(k+1)P )+E[c(k+1)|I(k)].

Therefore, the optimal cost J(N)∗ is given by

J(N)∗ =L(0) = E[x(0)′X(0)x(0)|I(0)]+c(0) (9)

=tr(X(0)Y0)+

N−1∑
k=0

tr(X(k+1)P )

+

N−1∑
k=0

tr[(A′X(k+1)A+Q−X(k))Y (k)].

It can be seen that the optimal F (k) does not depend on
the estimator design. In fact, it is the same as the optimal

state feedback gain derived for the LQR problem studied in
[18]. The computation of the error covariance Y (k) needs
more effort since the iterative equation (4) involves V̂ (k).
With the designed F (k) in (7), we have

x(k+1) = Ax(k)+B1w(k)+B2κI(k)F (k)x̂(k).

After some calculations and using Lemma 3 (b), we get

V̂ (k+1) =(A+B2MIF (k))V̂ (k)(A+B2MIF (k))′ (10)

+B2[Σ
2
I ⊙ (F (k)V̂ (k)F ′(k))]B′

2

+AY (k)A′−Y (k+1)+P.

The equations (4) and (10) constitute a coupling iteration,
from which Y (k) can be computed with initial condition
V̂ (0) = 0, Y (0) = Y0.

From the above analysis, we can see that the estimator
design, i.e., the optimal K(k) as in (3), indeed depends
on the design of F (k). This indicates that the separation
principle only partially holds. There is certain asymmetry
here. The design of F (k) does not depend on K(k), however,
the converse is not true.

The above results on finite-horizon LQG control with
random gains can be summarized in the next theorem.

Theorem 1: The optimal control law for N step is
vopt(k) = F (k)x̂(k). The feedback gain F (k) is given by
(7), where the matrix X(k) can be computed iteratively
using (8). The dynamics of x̂(k) is given by (2), where
K(k) is given by (3). The error covariance Y (k) can be
computed iteratively using (4) and (10). The optimal cost is
given by (9).

B. Infinite-horizon case

In the infinite-horizon case, the cost function becomes

lim
k→∞

E[z(k)′z(k)] = lim
N→∞

1

N
J(N).

We can solve the infinite-horizon case by taking the limit of
the horizon length to infinity. However, this requires that the
iteration of X(k) in (8) as well as the iteration of Y (k) in
(4) and (10) converge as N →∞, which is not necessarily
true for any given channel capacities. In other words, if the
capacities CIi , i = 1, 2, . . . ,m and COj , j = 1, 2, . . . , p are
fixed a priori, the LQG control problem we consider may be
infeasible.

To mitigate this difficulty, as mentioned before, the
problem is studied under the framework of channel/controller
co-design. We only assume that the total input channel
capacity CI and output channel capacity CO are constrained.
Now the controller designer has the additional freedom
to design the allocation vectors πI and πO. In this case,
surprisingly, the problem can be nicely solved.

Inherited from the finite-horizon result, the separation
principle only partially holds for the LQG control problem
of our concern. The design of the optimal feedback gain
F is independent of the design of the estimator, while the
converse is not true. To simplify the problem, we assume
that S=0, Q>0 and T =0, P >0.



For the control part, convergence of X(k) in (8) yields
the following control modified algebraic Riccati equation
(CMARE):

X=A′XA+Q−A′XB2[WI⊙(B′
2XB2+R)]−1B′

2XA. (11)

Note that (11) is exactly the same as the CMARE associated
with the LQR problem studied in [18] which is not surprising
since the optimal feedback gain is independent of the
estimator design.

Lemma 5: The CMARE (11) has a unique positive-
definite solution X if and only if [A|B2] is mean-square
stabilizable with capacity CI . Moreover, in this case, the
optimal feedback gain is given by

F = −M−1
I [WI ⊙ (B′

2XB2+R)]−1B′
2XA. (12)

The proof to Lemma 5 can be found in [18].
For the estimator part, with a designed πI and the

associated optimal F in (12), the convergence of Y (k) in
(4) and (10) yields the following coupled matrix equations:

AY A′−Y +P−AY C ′
2[WO ⊙ (C2Y C ′

2+H) (13)

+(WO−E)⊙ (C2V̂ C ′
2)]

−1C2Y A′ = 0,

(A+B2MIF )V̂ (A+B2MIF )′+B2[Σ
2
I⊙(FV̂ F ′)]B′

2 (14)
+AY A′ − Y + P = 0.

By Lemma 1 (b), we can solve V̂ from (14) in terms of a
linear function of AY A′−Y+P , i.e., V̂ = f(AY A′−Y+P ).
Substituting this into (13) yields

AY A′−Y +P−AY C ′
2[WO⊙(C2Y C ′

2+H)+(WO−E) (15)

⊙(C2f(AY A′−Y +P )C ′
2)]

−1C2Y A′ = 0.

Apparently the coupled equations (13), (14) have a solution
if and only if the filtering modified algebraic Riccati equation
(FMARE) (15) has a solution. Define the operator

φ(K,Y, P,H) = (A−KMOC2)Y (A−KMOC2)
′+P

+K[Σ2
O ⊙ (C2(Y +f(AY A′−Y +P ))C ′

2)]K
′

+KMO(WO ⊙H)MOK
′.

Also define the operator

g(Y, P,H) =AY A′+P−AY C ′
2[WO⊙(C2Y C ′

2+H)+(WO−E)

⊙(C2f(AY A′−Y +P )C ′
2)]

−1C2Y A′.

Then the FMARE (15) can be rewritten as Y = g(Y, P,H).
The next lemma establishes the condition for the existence
of a positive-definite solution to the FMARE (15) in terms

of the mean-square detectability of
[

A B2

C2 0

]
.

Lemma 6: For a designed πI and the associated optimal
gain F , the following assertions are equivalent:

(a)
[

A B2

C2 0

]
is mean-square detectable with output

channel capacity CO.
(b) There exist an allocation πO and a matrix Y > 0, such

that g(Y, P,H)− Y < 0.

(c) There exist an allocation πO such that the FMARE
(15) has a solution Y > 0. In this case, the optimal
innovation injection matrix K is given by

K =AY C ′
2[WO⊙(C2Y C ′

2+H)+(WO−E) (16)

⊙(C2f(AY A′−Y +P )C ′
2)]

−1M−1
O .

The proof to Lemma 6 is presented in the Appendix. With
these preparations, we are now in a position to state the main
theorem on the infinite-horizon LQG control with random
input and output gains.

Theorem 2: The infinite-horizon problem is solvable if
and only if [A|B2] is mean-square stabilizable with CI

and
[

A B2

C2 0

]
is mean-square detectable with CO for

a designed πI and the associated optimal F . In this case, the
optimal LPV controller K is given by

x̂(k+1) = (A−KMOC2+B2κI(k)F )x̂(k)+Kq(k),

v(k) = Fx̂(k),

with F in (12) and K in (16). Moreover, the optimal cost is
given by

min lim
k→∞

E[z(k)′z(k)] = tr(XP )+tr[(A′XA+Q−X)Y ],

where X is the solution to (11) and Y is the solution to (15).
Proof: The condition on the solvability of the infinite-

horizon problem follows from Lemma 5 and Lemma 6. The
optimal K as well as the optimal cost can be obtained by
taking the limit of the finite-horizon result as N → ∞.

Remark 1: When CI = ∞, the CMARE (11) reduces to
a standard control ARE. Also, when CO = ∞, the FMARE
(15) reduces to a standard filtering ARE.

VI. CONCLUSION

In this paper, the LQG control of LTI systems with random
input and output gains is studied. One main novelty of this
work is that we study the problem under the framework
of channel/controller co-design which allows the control
designer to have the additional freedom to design the
channels. With the channel/controller co-design, the optimal
control problem studied is feasible if and only if the system is
mean-square stabilizable and detectable. The minimum input
channel capacity CI required is given by h(A). The minimum
output channel capacity CO depends on the design of πI

and the associated optimal F . A closed-form solution to the
minimum CO is currently under our investigation.

We show that the separation principle partially holds under
the TCP-like protocols. On one hand, the optimal controller
is still an estimated state feedback, combining the optimal
state feedback design and the optimal state estimation design.
On the other hand, there exists certain asymmetry. Although
the optimal state feedback gain does not depend on the
estimator design, the optimal estimator does depend on the
optimal state feedback gain.

APPENDIX

We give proofs to Lemma 3, Lemma 4 and Lemma 6 in
the Appendix.



A. Proof of Lemma 3

(a) By definition, E[e(k)x̂(k)′] = E[(x(k)−x̂(k))x̂(k)′] =
E[x(k)]x̂(k)′−x̂(k)x̂(k)′ = 0.

(b) By part (a), we have V (k) = E[(x̂(k)+e(k))(x̂(k)+
e(k))′] = Y (k)+V̂ (k).

(c) Again, by part (a), we have E[x(k)′Tx(k)] =
E[(x̂(k)+e(k))′T (x̂(k)+e(k))] = x̂(k)′T x̂(k)+tr(TY (k))+
2tr(TE[e(k)x̂(k)′]) = x̂(k)′T x̂(k)+tr(TY (k)). �

B. Proof of Lemma 4

First, it can be easily verified that

E[η(k)] = E[κO(k)(C2x(k)+D21w(k))−MOC2x̂(k)] = 0.

Then we compute the covariance of η(k). When k ̸= l,
E[η(k)η(l)′] = E[η(k)]E[η(l)]′ = 0. When k = l,

E[η(k)η(k)′] =E[(q(k)−MOC2x̂(k))(q(k)−MOC2x̂(k))
′]

=MO(C2Y (k)C ′
2+H)MO

+Σ2
O ⊙ (C2V (k)C ′

2+H)

=MO(C2Y (k)C ′
2+H)MO

+Σ2
O ⊙ (C2Y (k)C ′

2+H+C2V̂ (k)C ′
2),

which completes the proof. �

C. Proof of Lemma 6

It can be inferred from Lemma 2 (b) that
[

A B2

C2 0

]
is mean-square detectable with capacity CO, if and only if
for sufficiently small α > 0, there exist πO, K and Y > 0
such that

φ(K,Y, αP, αH)− Y < 0. (17)

For this particular Y , minimizing φ(K,Y, αP, αH) with
respect to K yields the optimal K as in (16). Substituting
(16) into (17) indicates that the inequality (17) holds if and
only if

g(Y, αP, αH)− Y < 0. (18)

Note that (18) is equivalent to g(Ỹ , P,H) − Ỹ < 0, where
Ỹ = 1

αY . This shows the equivalence between (a) and (b).
Now we show (b) ⇒ (c). The following fact is used: for

every 0≤Y1≤Y2, g(Y1, P,H)≤g(Y2, P,H), i.e. g(Y, P,H)
is monotonically increasing with respect to Y . Suppose that
the inequality g(Y, P,H)− Y < 0 holds for certain πO and
Y >0. Define the iteration Ŷk=g(Ŷk−1, P,H). For any initial
condition Ŷ0≥0, we can get a sequence {Ŷk}k≥0. Apparently,
there exist 0≤ a1 < 1, a2 > 0 such that g(Y, P,H)≤ a1Y ,
Ŷ0≤a2Y , and a1a2≥ 1. Then

Ŷ1=g(Ŷ0, P,H)≤a1a2Y,

Ŷ2=g(Ŷ1, P,H)≤max{a21a2Y, Y },
...

Ŷk=g(Ŷk−1, P,H)≤max{ak1a2Y, Y },

which implies that the sequence {Ŷk}k≥0 is bounded from
above. Now we let Ŷ0 = ϵI with sufficiently small ϵ > 0

such that Ŷ1 > Ŷ0. By the monotonicity of the operator
g(Y, P,H), we have Ŷk >Ŷk−1>0 for k> 0. Therefore by
monotone convergence theorem, Ŷ =limk→∞ Ŷk exists and
satisfies Ŷ =g(Ŷ , P,H)>0.

Finally, we show (c) ⇒ (a). Suppose that Y = g(Y, P,H)
holds for certain πO and Y > 0. Let K be given by
(16), then φ(K,Y, 0, 0) − Y < 0. According to Lemma 2,[

A B2

C2 0

]
is mean-square detectable with CO which

completes the proof. �
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