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EXTENDED ABSTRACT. This paper studies the Linear Quadratic Regu-
lator (LQR) problem of continuous-time LTI systems with random gains. The main
novelty of this work is the use of the channel/controller co-design framework which
bridges and integrates the design of the channels and the controller. The co-design
is carried out by the twist of channel resource allocation, i.e., the channel capacities
can be allocated by the control designer subject to an overall capacity constraint.
By virtue of this additional design freedom, under certain conditions, a nice analytic
solution is obtained for the LQR problem with random gains. The optimal control
law is a linear state feedback.

Problem Formulation. The system studied in this work is shown in Fig. 0.1.
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Fig. 0.1. LTI systems with random input gains.

Consider the plant:

ẋ(t) = Ax(t) +Bu(t),

z(t) = Cx(t) +Du(t),

where x(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rp. We denote the plant by

[
A B
C D

]
for simplicity. Assume that [A|B] is stabilizable and x(t) is available for feedback
control. Different from the classical setup of an LTI system, a random gain
matrix κ(t) is imposed on the control input, i.e., u(t) = κ(t)v(t), where κ(t) =
diag{κ1(t), κ2(t), . . . , κm(t)} is a random matrix consisting of diagonal white noise
process elements with mean µi = E [κi(t)] and variance σ2

i = E
[
(κi(t)− µi)

2
]
. The

ratio µi

σi
, denoted as SNRi, is the signal-to-noise ratio in the ith input channel. Such

LTI systems with random gains have wide applications in different areas such as
networked control, economic stability and financial engineering, etc. Denote

M , diag{µ1, µ2, . . . , µm},
Σ2 , diag{σ2

1 , σ
2
2 , . . . , σ

2
m},

W , M−2Σ2 = diag{SNR−2
1 , SNR−2

2 , . . . , SNR−2
m }.
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The mean-square capacity of the ith input channel is defined in [4] as Ci , 1
2
µ2
i

σ2
i
=

1
2SNR

2
i . The overall channel capacity is then given by C =

∑m
i=1 Ci.

We study the state feedback LQR problem with random gains. One traditional
way is to fix the channel capacities a priori and then find the optimal control law to
minimize

E[∥z∥22] = E

[∫ ∞

0

z(t)′z(t)dt

]
= E

[∫ ∞

0

[
x(t)

κ(t)v(t)

]′ [
Q S
S′ R

] [
x(t)

κ(t)v(t)

]
dt

]
,

where

[
Q S
S′ R

]
,

[
C ′

D′

] [
C D

]
. However, under this formulation, the problem is not

always feasible for any given set of channel capacities.
To tackle this difficulty, the channel/controller co-design framework provides a

significant insight, which is the main novelty of this work. In this case, the individual
channel capacities Ci are not assumed to be given. Instead, they are designed, or
allocated under an overall capacity constraint C. The allocation of the overall capacity
to the individual channels, called channel resource allocation, can be formally given
by a probability vector π =

[
π1 π2 . . . πm

]′
, where 0 ≤ πi ≤ 1,

∑m
i=1 πi = 1,

such that Ci = πiC. With the channel/controller co-design, our problem becomes to
simultaneously design a probability vector π and the optimal control law to minimize
E[∥z∥22].

Before proceeding, recall that the topological entropy [1] of a matrix A ∈ Rn×n

is given by h(A) =
∑

|λi|>1 ln |λi|, where λi are the eigenvalues of A. Based on this,

we define the topological entropy of the continuous-time plant as Hc(A) = h(eA) =∑
R(λi)>0 λi, where λi are the eigenvalues of A.

Main Results. To solve the LQR problem formulated above, we first consider
the finite-horizon optimal control and then take the limit as the horizon-length goes
to infinity.

The finite-horizon case can be easily solved by either dynamic programming or
completing squares. The cost function for horizon length T is

J(T ) = E

[∫ T

0

[
x(t)

κ(t)v(t)

]′ [
Q S
S′ R

] [
x(t)

κ(t)v(t)

]
dt

]
,

where v(T ) = 0. Let E be an m×m matrix with all elements equal to 1. The optimal
control law minimizing J(T ) is given in the following theorem.

Theorem 0.1. For every initial state x(0), the optimal control law for horizon
[0, T ] is vopt(t) = F (t)x(t), where

F (t) = −M−1[W ⊙ (B′X(t)B)+(E+W )⊙R]−1(B′X(t)+S′)

and X(t) is the solution to the matrix differential equation

−Ẋ =A′X+XA+Q−(XB+S)[W⊙(B′XB)+(E+W )⊙R]−1(B′X+S′),(0.1)

X(T ) = Q.

Moreover, the optimal cost is given by minJ(T ) = x(0)′X(0)x(0).
To study the infinite-horizon case, we first present some preliminary knowledge

on the mean-square stabilization.
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Definition 0.2. [A|B] is said to be stabilizable with capacity C if there is an
allocation π and a state feedback gain F such that the closed-loop system

ẋ(t) = (A+Bκ(t)F )x(t)(0.2)

with Ci = πiC is mean-square stable, i.e., for any initial state x(0), N(t) ,
E[x(t)x′(t)] is well-defined for any t > 0 and limt→∞ N(t) = 0.

Remark 1. When C = ∞, the above definition reduces to that of classical
stabilizability.

The next theorem gives a necessary and sufficient condition for the mean-square
stabilizability in terms of the topological entropy of the open-loop plant.

Theorem 0.3 ([4]). [A|B] is stabilizable with capacity C if and only if [A|B] is
stabilizable and C > Hc(A).

As mentioned before, the infinite-horizon LQR problem with random gains can be
solved by taking the limit of the finite-horizon result as T → ∞. However, this requires
that the following continuous-time modified algebraic Riccati equation (MARE)

A′X+XA+Q−(XB+S)[W⊙(B′XB)+(E+W )⊙R]−1(B′X+S′) = 0(0.3)

has a mean-square stabilizing solution X in the sense that the associated state
feedback gain

F = −M−1[W⊙(B′XB)+(E+W )⊙R]−1(B′X+S′)(0.4)

makes the closed-loop system (0.2) mean-square stable.
Theorem 0.4. If MARE (0.3) has a mean-square stabilizing solution X, then

for every initial state x(0), the infinite-horizon optimal control law is vopt(t) = Fx(t)
with F as in (0.4). The optimal cost is given by minE[∥z∥22] = x(0)′Xx(0).

Remark 2. When C = ∞, the MARE (0.3) reduces to the classical continuous-
time algebraic Riccati equation.

Unfortunately, if the channel capacities Ci are given a priori, by Theorem 0.3,
even the mean-square stabilizability cannot be guaranteed, let alone the existence
of the optimal control law. However, by virtue of the channel/controller co-design
which provides additional design freedom to allocate the capacities among the input
channels, the infinite-horizon case can be nicely solved under certain conditions.

In the sequel, we investigate the existence of the mean-square stabilizing solution
to MARE (0.3) by building a connection with the following linear matrix inequalities
(LMIs): 

[
A′X +XA+Q XB + S

B′X + S′ W⊙(B′XB) + (E+W )⊙R

]
≥ 0,

W⊙(B′XB) + (E+W )⊙R > 0.

(0.5)

A similar approach has been used in [2, 3].
The LMIs (0.5) is said to be feasible if it has a solution. It is said to be strictly

feasible if it has a solution such that the first inequality is strictly satisfied. The
maximal solution to LMIs (0.5), denoted as X+, is a solution which is greater than
or equal to any other solution. The maximal solution, if exists, is unique.

The next theorem bridges the maximal solution to LMIs (0.5) and the mean-
square stabilizing solution to MARE (0.3).
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Theorem 0.5. Assume that [A|B] is stabilizable with capacity C. If LMIs (0.5)
is feasible, then it has a maximal solution X+. Moreover, X+ is a solution to the
MARE (0.3). In this case, the MARE (0.3) has at most one mean-square stabilizing
solution, which coincides with X+.

One can compute X+ by solving the convex optimization problem below:

max tr(X),

subject to constraints (0.5).

A sufficient condition for the maximal solution to be indeed mean-square
stabilizing is presented in the following theorem.

Theorem 0.6. Assume that [A|B] is stabilizable with capacity C. If LMIs (0.5)
is strictly feasible, then the MARE (0.3) has a mean-square stabilizing solution X.

We apply the above results to some special cases. First, we consider the case

when

[
Q S
S′ R

]
> 0. Clearly, X = 0 is a strictly feasible solution to LMIs (0.5). By

Theorem 0.6, the MARE (0.3) has a unique mean-square stabilizing solution and the
infinite-horizon LQR problem is solvable.

We proceed to look at the general case where the only assumption is R > 0.
In this case, X = 0 is only a feasible solution to (0.5). By Theorem 0.5, the LMIs
(0.5) has a maximal solution X+ which is also a solution to MARE (0.3). However,
whether X+ is mean-square stabilizing is not clear. Nevertheless, we can compute X+

by solving the convex optimization problem mentioned before and then check whether
it is mean-square stabilizing. If not, the MARE (0.3) does not have a mean-square
stabilizing solution in this case. On the other hand, if we let Q̃ = Q+ϵI for ϵ > 0, then[
Q̃ S
S′ R

]
> 0 and thus the associated infinite-horizon LQR problem is solvable. Taking

the limit as ϵ → 0 indicates that in the general case, inf E[∥z∥22] = x(0)′X+x(0). But
this cost is not achieved by a mean-square stabilizing controller.

It can be seen from the above discussions that the sufficient condition given in
Theorem 0.6 is quite strong. How to relax it to obtain a necessary and sufficient
condition is not clear at this stage and is under our current investigation.
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