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Abstract: In this paper, the linear quadratic (LQ) optimal control of discrete-time linear time-invariant (LTI) systems with
random input gains is studied. We define the capacity of each input channel whose sum yields the total capacity of all input
channels. Different from the finite-horizon case which can be solved by dynamic programming, the infinite-horizon case may be
unsolvable if the capacities of the individual channels are fixed a priori. The main novelty of this work is that we put the problem
under the framework of channel/controller co-design which allows the control designer to have the additional freedom to design
the channels. We assume that the overall channel capacity is constrained which can be allocated to the individual channels. By
channel/controller co-design, it is shown that the infinite-horizon case is solvable if and only if the overall capacity of the input
channels is greater than the topological entropy of the open-loop plant. Moreover, the optimal control signal is a linear state
feedback.
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1 Introduction

The growing developments in networked control systems
(NCSs), financial engineering and other related topics have
stimulated great interest in stochastic systems. Parallel to
the control theory for deterministic systems, stabilization
as well as optimal control of stochastic systems have been
investigated widely. One can refer to [5, 9, 20] for a general
study of stochastic control systems.

The LQ optimal control is one of the most important
control problems. In [9], the infinite-horizon LQ optimal
control for a general stochastic system with both state and
control-dependent noise is studied. The authors derive the
optimal control law under certain assumptions of mean-
square stabilizability and exact observability.

Instead of studying the general stochastic systems, we
focus on LTI systems with random input gains in this
paper. Such systems arise frequently in the area such
as networked control, financial engineering and economic
stability [12], etc. In particular, in the context of NCSs,
much research has been done recently, most of which treats
the LQ optimal control as part of the Linear Quadratic
Gaussian (LQG) control problem. For convenience, in
an NCS, the channels through which the plant output is
sent to the controller is named as the output channels and
the channels through which the controller output is sent
to the plant is named as the input channels. The work
in [7] considers the LQG control with packet dropping
in the output channels. It is shown that the separation
principle holds under the TCP-like protocol and the control
law derived is optimal for an arbitrary packet dropping
pattern. The LQG control of a multi-input-multi-output
(MIMO) system with a single packet dropping input channel
and a single packet dropping output channel is considered
in [11, 16]. The packet dropping channel is modeled as an
i.i.d Bernoulli process. The authors point out that the optimal
LQG control is a linear function of the estimated state which
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depends on the packet dropping probabilities.
Researchers have also studied the LQG control over multi-

ple parallel communication channels for a MIMO NCS. One
such example is given by [8]. The objective there is to find
the optimal control law assuming that the packet dropping
probabilities are given a priori. The separation principle is
shown to hold under the TCP-like protocol and the optimal
control law is obtained in the finite-horizon case. For the
infinite-horizon case, a sufficient condition on the stability
of the closed-loop system is given by a set of linear matrix
inequalities (LMIs).

Inspired by the aforementioned results, we study the
infinite-horizon LQ optimal control for LTI systems with
random input gains. Different from the setting in [8], we put
the problem under the framework of channel/controller co-
design which is the main novelty of this paper. We assume
that the controller designer has the freedom to participate in
the channel design. Due to this additional design freedom,
the objective now becomes to simultaneously design the
control signal and channels such that the cost function is
minimized. More specifically, we assume that the channel
capacities can be allocated as desired subject to an overall
capacity constraint. Different from the finite-horizon case
where the optimal control signal can be easily obtained by
dynamic programming, the infinite-horizon case requires
more effort, where the channel/controller co-design plays a
crucial role. By channel/controller co-design, under certain
assumptions on the system parameters, the infinite-horizon
case is solvable if and only if the overall capacity of the input
channels is greater than the topological entropy of the open-
loop plant. Moreover, the optimal control signal is a linear
state feedback.

The framework of channel/controller co-design is first
proposed in [6], which studies the stabilization of multi-
input NCSs with the signal-to-error ratio (SER) channel
model. The work in [6] is extended in [14] where a more
complete study is carried out on stabilization of multi-input
NCSs. Besides the SER channel model, another two channel
models are considered, i.e., the received signal-to-error ratio



(R-SER) model and the AWGN channel model. With the
channel/controller co-design, a uniform analytic solution is
obtained for the minimum total channel capacity required
for stabilization with each channel model given in terms
of the topological entropy of the plant. Several other
works [2, 18] have been carried out following this frame-
work. In [2], it points out that the continuous-time NCS with
multirate sampling can be stabilized by state feedback under
the channel/controller co-design framework if and only if
the total network capacity is greater than the topological
entropy of the plant. In [18], it is shown that a multi-
input system over parallel stochastic multiplicative channels
can be mean-square stabilized by state feedback under the
channel/controller co-design framework if and only if the
overall mean-square channel capacity is greater than the
topological entropy.

The remainder of this paper is organized as follows. The
problem is formulated and the channel/controller co-design
framework are introduced in Section 2. The finite-horizon
case is studied in Section 3. Section 4 first presents some
useful preliminaries, then investigates the infinite-horizon
case under the framework of channel/controller co-design.
Conclusions follow in Section 5.

The notation in this paper is more or less standard and
will be made clear as we proceed. The symbol � means
Hadamard product and denote Tr(A), λmax(A) as the trace,
maximal eigenvalue of a matrix A, respectively.

2 Problem Formulation

Consider the following system as shown in Fig. 1.

K(k)

[
A B
C D

]
z(k)v(k) u(k)

Fig. 1. Discrete-time LTI Systems with Random Input Gains

The plant is described by the following state-space equa-
tions

x(k+1)=Ax(k)+Bu(k),

z(k)=Cx(k)+Du(k),
(1)

where x(k) ∈ Rn , u(k) ∈ Rm and z(k) ∈ Rp. We denote

the plant by
[
A B

C D

]
for simplicity. Assume that [A|B]

is stabilizable, D has full column rank and x(k) is available
for feedback control. Different from the classical setup of
an LTI system, a random input gain K(k) is imposed on the
control input:

u(k)=K(k)v(k),

where K(k) = diag{κ1(k), κ2(k), . . . , κm(k)} is a random
matrix consisting of diagonal white noise elements with
mean µi = E [κi(k)] and variance σ2

i = E
[
(κi(k)−µi)2

]
.

The signal-to-noise ratio of ith input channel is denoted by
SNRi ,

µi

σi
. Such LTI systems with random input gains

have wide applications in different areas such as networked
control, financial engineering and economic stability, etc.
The random gain K(k) has different physical interpretations
in different situations. In the contexts of NCSs, K(k) can be
used to model the multiplicative noises in the input channels

while in the economic problems, it represents the multiplica-
tive uncertainty existing in the economic parameters. Denote

M,diag{µ1, µ2, . . . , µm},
Σ2,diag{σ2

1 , σ
2
2 , . . . , σ

2
m},

W ,


1+SNR−21 1 · · · 1

1 1+SNR−22

. . .
...

...
. . . . . . 1

1 · · · 1 1+SNR−2m

 .
Recall that the mean-square capacity of the ith input

channel is defined as [3]:

Ci,
1

2
log(1+

µ2
i

σ2
i

) =
1

2
log(1+SNR2

i ).

The overall mean-square capacity is given by C =
∑m
i=1 Ci.

The aim of this work is to find a control signal which
makes the closed-loop system stable in some sense and
minimizes the LQ cost function

E[‖z‖22] =E

[ ∞∑
k=0

z′(k)z(k)

]

= E

[ ∞∑
k=0

[
x(k)

K(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

K(k)v(k)

]]
,

where [
Q S
S′ R

]
,

[
C ′

D′

] [
C D

]
.

One traditional way to handle this problem, as shown
in some current literature, is to fix the individual channel
capacities a priori and then find the optimal control signal
to minimize E[‖z‖22]. However, under this formulation,
the problem is not always well-posed for any given channel
capacities, i.e., the cost function might be always infinity no
matter what control signal is used or the control signal that
minimizes the cost function does not stabilize the system.

To tackle this difficulty, the channel/controller co-design
framework provides a significant insight, which is the main
novelty of this work. In this case, the individual channel
capacities Ci are not assumed to be given. Instead, they
are to be designed, or allocated under an overall capacity
constraint C. The allocation of the overall capacity to the
individual channels, called channel resource allocation, is
formally given by a probability vector

π =
[
π1 π2 . . . πm

]′
,

where 0 ≤ πi ≤ 1,
∑m
i=1 πi = 1, such that Ci = πiC. With

the help of the channel/controller co-design, our problem
becomes to simultaneously design a probability vector π and
the optimal control law to minimize E[‖z‖22] under a certain
overall capacity constraint.

3 Finite-horizon LQ Optimal Control

In the deterministic LQ optimal control problem, the
infinite-horizon case, if it is well-posed, can be solved by
taking the result to the finite-horizon case as the horizon



length goes to infinity. Similarly, we first study the finite-
horizon LQ optimal control of discrete-time LTI systems
with random input gains in this section. The infinite-horizon
case will be investigated in the next section.

In the finite-horizon case, the cost function for the horizon
length N with the initial state x(0) and the control signal
vN , {v(0), v(1), . . . , v(N)} is given in the following
quadratic form:

JN (x(0), vN )

=E

[
N∑
k=0

[
x(k)

K(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

K(k)v(k)

]]
.

The objective is to find the optimal control signal voptN ,
{vopt(0), vopt(1), . . . , vopt(N)} to minimize JN (x(0), vN ).
The following theorem shows that the optimal control signal
is a linear function of the state and depends on the mean-
square capacity of each input channel. The proof which
is based on dynamic programming is presented in the Ap-
pendix.
Theorem 1. For every initial state x(0), the optimal control
signal for the horizon length N is given by

vopt(k) = F (k)x(k), (2)

where

F (k)=−M−1[W�(R+B′XN (k+1)B)]−1

× [B′XN (k+1)A+S′],

XN (k)=A′XN (k+1)A+Q−[A′XN (k+1)B+S]

× [W�(B′XN (k+1)B+R)]−1

× [B′XN (k+1)A+S′],

XN (N+1)= 0,

(3)

for k=N,N−1, . . . , 0, and the optimal cost is given by

x′(0)XN (0)x(0).

4 Infinite-horizon LQ Optimal Control

In this section, we study the infinite-horizon LQ optimal
control of discrete-time LTI systems with random input
gains. This infinite-horizon case, as we mentioned before,
may not be well-posed if the individual channel capacities
are fixed a priori. However, by virtue of channel/controller
co-design, it becomes well-posed under certain assumptions.

4.1 Preliminary
Before proceeding, some useful preliminaries will be

presented.
Recall the following two concepts. One is the Mahler

measure [13] of an n × n matrix A, denoted by M(A),
which is the product of the absolute value of the unstable
eigenvalues of A, i.e.,

M(A) =

n∏
i=1

max{1, |λi(A)|}.

The second is the topological entropy [1] of A, denoted by
h(A), which is the logarithm of M(A), i.e.,

h(A) = logM(A).

Consider a discrete-time stochastic system

x(k+1)=

(
A0 +

K∑
i=1

Aipi(k)

)
x(k),

where p1(k), . . . , pK(k) are independent random variables.
It is said to be mean-square stable if for any initial state
x(0), E[x(k)x′(k)] is well-defined for any k > 0 and
lim
k→∞

E[x(k)x′(k)]=0.

Definition 1. [A|B] is said to be stabilizable with capacity
C if there exists an allocation π and a feedback gain F such
that the closed-loop system

x(k+1)=(A+BK(k)F )x(k) (4)

with Ci=πiC is mean-square stable.
Remark 1. When C =∞, this definition reduces to that of
classic stabilizability.

Several sufficient and necessary conditions on the stabi-
lizability of [A|B] with capacity C is given in the following
lemma. In particular, it indicates that the minimum total
channel capacity required for mean-square stabilization with
channel resource allocation is equal to the topological en-
tropy of the open-loop plant.
Lemma 1 ([18, 19]). The following statements are equiva-
lent:

i) [A|B] is stabilizable with capacity C.
ii) C>h(A).

iii) There exist an allocation π, matrices F and X>0 such
that

X>(A+BMF )′X(A+BMF ) (5)

+F ′[Σ2�(B′XB)]F.

Moreover, the closed-loop system (4) is mean-square
stable with v(k)=Fx(k).

Remark 2. It is worthwhile emphasizing the basic idea in the
proof of Lemma 1. Without loss of generality, [A|B] can be
assumed to have the following Wonham decomposition [17]:

A=


A1 ∗ · · · ∗

0 A2
. . .

...
...

. . . . . . ∗
0 · · · 0 Am

, B=


b1 ∗ · · · ∗

0 b2
. . .

...
...

. . . . . . ∗
0 · · · 0 bm

 ,

where each pair [Ai|bi] is stabilizable. It is clear from the
Wonham decomposition that Ai contains all the unstable
eigenvalues of A which are controllable by the ith input but
not controllable by any previous inputs. For a given overall
capacity C, a feasible allocation π can always be found such
that Ci=πiC>h(Ai). With this allocation, we sequentially
design fi such that [Ai|bi] is stabilized with capacity Ci.
The existence of such fi is guaranteed by the result in [3]
for the state feedback mean-square stabilization of a single-
input system over a fading channel. By such a sequential
design, [A|B] can be stabilized with capacity C.



4.2 Main Result
In the infinite-horizon case, the cost function is

J∞(x(0), v∞)=E[‖z‖22],

where v∞,{v(0), v(1), . . . , v(∞)}. With the finite-horizon
result as shown in Theorem 1, the infinite-horizon case can
be solved by taking the horizon length N→∞. However,
this requires that as N →∞, the matrix XN (0) solved by
the backward iteration of XN (k) in (3) converges to a ma-
trix X which satisfies the following discrete-time Modified
algebraic Riccati equation (MARE):

X=A′XA+Q−(A′XB+S)

× [W�(R+B′XB)]−1(B′XA+S′).
(6)

Moreover, the matrix X is required to be mean-square sta-
bilizing in the sense that with the associated state feedback
gain

FX =−M−1[W�(R+B′XB)]−1(B′XA+S′), (7)

the closed-loop system (4) is mean-square stable. Unfortu-
nately, the above requirements are not necessarily satisfied
for any channel capacities C1,C2, . . . ,Cm. If the individual
capacities are given a priori, in view of Lemma 1, even the
mean-square stabilizability cannot be guaranteed, let alone
the existence of the optimal control signal.

To tackle this difficulty, we study the infinite-horizon
LQ optimal control with random input gains under the
framework of channel/controller co-design. We make the
following assumption:

Assumption 1.
[
Q S
S′ R

]
>0.

With the additional design freedom given by
channel/controller co-design, the infinite-horizon case
can be nicely solved. In the following theorem, which is the
main result of this work, we find a necessary and sufficient
condition under which the MARE (6) has a mean-square
stabilizing solution with a feasible allocation π. Thus the
infinite-horizon case is solvable.
Theorem 2. For every initial state x(0), the optimal control
signal together with a feasible allocation π exist if and only if
[A|B] is stabilizable with capacity C. Then for the designed
π, the optimal control signal is given by

vopt(k)=FXx(k),

where X is the mean-square stabilizing solution to (6) and
FX is the associated state feedback gain as in (7). The
optimal cost is given by x′(0)Xx(0).

Proof: The necessity is quite straightforward by the above
analysis. It suffices to show the sufficiency.

First, we will show the existence of a solutionX>0 to the
MARE (6). Denote

VN (x(0)),min
vN

(JN (x(0), vN ).

Then by Theorem 1, VN (x(0)) = x′(0)XN (0)x(0). For
N2>N1≥0,

VN2(x(0))≥VN1(x(0)),

which implies XN2(0) ≥ XN1(0), i.e., XN (0) is mono-
tonically increasing with respect to N . Furthmore, since[
Q S
S′ R

]
> 0, by Schur complements, Q−SR−1S′ > 0,

which implies

X1(x(0))=Q−S(W �R)−1S′>0.

Then we have

XN2(x(0))≥XN1(x(0))>0

for N2>N1≥1.
Since [A|B] is stabilizable with capacity C, by Lemma 1,

there exist an allocation π, a feedback gain F and Y >0 such
that

Y =(A+BMF )′Y (A+BMF )

+F ′[Σ2�(B′Y B)]F+I. (8)

Moreover, the closed-loop system (4) is mean-square stable
with this feedback gain F .

Denote G(k),E[x(k)x′(k)]. It is easy to obtain

Tr [G(k+1)Y ]

=Tr {E[(A+BK(k)F )x(k)x′(k)(A+BK(k)F )′]Y }
=Tr{(A+BMF )G(k)(A+BMF )′Y

+B[Σ2�(FG(k)F ′)]B′Y }
=Tr{G(k)(A+BMF )′Y (A+BMF )

+G(k)F ′[Σ2�(B′Y B)]F}
=Tr[G(k)Y ]−Tr[G(k)],

where equation (8) is used to derive the last equality. By
summing over k=0, 1, . . . , N , we obtain

N∑
k=0

Tr[G(k)]=Tr [G(0)Y ]−Tr [G(N+1)Y ] .

Furthermore, due to the mean-square stability of the closed-
loop system (4), i.e., lim

k→∞
G(k)=0, we obtain

∞∑
k=0

E[‖x(k)‖2] =

∞∑
k=0

Tr [G(k)]=Tr[G(0)Y ]≤r1‖x(0)‖2,

where r1 =λmax(Y ),
With v(k)=Fx(k), the cost function becomes

J∞(x(0), v∞)=

∞∑
k=0

Tr[E[z(k)z(k)′]]=

∞∑
k=0

Tr[G(k)U ]

≤r2‖x(0)‖2

with

U,(C+DMF )′(C+DMF )+F ′[Σ2�R]F

and r2 =λmax(U)λmax(Y ). Then

x′(0)XN (0)x(0)=VN (x(0))

≤V∞(x(0))≤J∞(x(0), v∞)≤r2‖x(0)‖2,



which implies 0≤XN (0)≤r2I . By monotone convergence
theorem, X=limN→∞XN (0)>0 exists.

Next we show that X is a mean-square stabilizing solu-
tion. Notice that with FX defined in (7), the MARE (6)
becomes

X=(A+BMFX)′X(A+BMFX)

+F ′X [Σ2�(B′XB)]FX+U. (9)

Also, U can be rewritten as follows:

U=Q−SR−1S′+(SR−1+F ′M ′)R(SR−1+F ′M ′)′

+F ′[Σ2�R]F,

Since Q−SR−1S′>0, U >0. Therefore, from (9),

X>(A+BMFX)′X(A+BMFX)+F ′X [Σ2�(B′XB)]FX.

By Lemma 1, the closed-loop system (7) is mean-square
stabilized with feedback gain FX . Hence the optimal control
signal is given by vopt(k) =FXx(k) and the optimal cost is
x′(0)Xx(0). 2

Note that to ensure the existence of the mean-square sta-
bilizing optimal control signal, we need to impose some as-
sumptions on the system parameters. Assumption 1 provides
a sufficient assumption, but it seems to be unnecessarily
strong. How to find the minimal necessary assumptions en-
suring the existence of the mean-square stabilizing optimal
control signal remains to be studied and is under our inves-
tigation. Nevertheless, we can get some insight from the
deterministic LQ optimal control, where the minimal neces-
sary assumptions on the system parameters are that [A|B]

is stabilizable,
[
A

C

]
is detectable and

[
A−ejωI B

C D

]
has

full column rank for all ω ∈ [0, 2π). In fact, for our

current problem, the detectability of
[
A

C

]
is still necessary.

Otherwise, let λ be an unstable and unobservable eigenvalue
of A , then to make the cost function minimized, the
best control strategy is to ignore the eigenvalue λ and
thus the closed-loop system is not mean-square stabilized.
We are continuing to investigate the necessary assumption
that is parallel to the third one for the deterministic case.
In the following, we provide two motivating examples to
illustrate the gap between the sufficient assumption given
by Assumption 1 and the necessary assumption on the

detectability of
[
A

C

]
.

We first consider an LTI system with A =

[
2 0
1 3

]
, B =[

1 0
0 2

]
, C =

[
1 0
0 2

]
, D =

[
1 0
0 1

]
. Design the mean and

covariance matrix of the random input gain to be M =[
2 0
0 4

]
and Σ2=

[
1 0
0 1.6

]
. It can be verified that C>h(A)

and the allocation of the channel capacities is feasible.
The iteration of XN (k) defined in (3) converges to X =[
7.3983 0.7203
0.7203 3.1463

]
. The associated state feedback gain is

given by F =

[
−0.7545 −0.0072
−0.1171 −0.3489

]
. We can check that X

and F satisfy iii) of Lemma 1 which implies the closed-
loop system (4) is mean-square stable with F . Note that

in this example,
[
Q S
S′ R

]
is not positive-definite while the

mean-square stabilizing optimal control signal exists. This
illustrates that Assumption 1 is indeed not necessary.

Now consider another LTI system with A=

[
2 0
1 3

]
, B=[

1 1
2 2

]
, C =

[
1 0
0 2

]
, D =

[
1 1
0 2

]
. Clearly,

[
A

C

]
is

detectable. The design of the random input gain is the same
as that in the previous example. Again, C>h(A) and the al-
location of the channel capacities is feasible. In this case, the
iteration of XN (k) defined in (3) diverges, i.e., the optimal
control signal does not exist. This example illustrates that the

assumption on the detectability of
[
A

C

]
is not sufficient for

the existence of the mean-square stabilizing optimal control
signal.

5 Conclusion

In this paper, the LQ optimal control of discrete-time
LTI systems with random input gains is studied. Different
from the finite-horizon case which can be solved by dynamic
programming, the infinite-horizon case may be unsolvable if
the capacities of the individual channels are fixed a priori.
To tackle this difficulty, we put the problem under the
framework of channel/controller co-design which allows the
control designer to have the additional freedom to design the
channels. We assume that the overall channel capacity is
constrained and can be allocated to the individual channels.
By channel/controller co-design, under certain assumptions
on the system parameters, it is shown that the infinite-
horizon LQ optimal control is solvable if and only if the
overall capacity of the input channels is greater than the
topological entropy of the open-loop plant. The mean-square
stabilizing optimal control signal is a linear state feedback
with the feedback gain associated to the MARE (6). In the
future, we wish to find the minimal assumptions under which
there exists the optimal control signal.

Appendix

Proof of Theorem 1
The proof is based on dynamic programming. Define the

initial condition and cost-to-go function as

XN (N+1)=0, L(N+1)=0,

L(k)=min
v(k)

E

[[
x(k)

K(k)v(k)

]′[
Q S
S′ R

][
x(k)

K(k)v(k)

]
+L(k+1)

]
,

for k = N, . . . , 1, 0.
First, it is easy to see that

L(N+1)=x′(N+1)XN (N+1)x(N+1) = 0.

Next we will show that if L(k+1) is a quadratic function of
the state x(k+1), i.e., L(k+1)=x′(k+1)XN (k+1)x(k+1),
thenL(k) is also a quadratic function of the state x(k). From



the definition of L(k), we have

L(k)=min
v(k)

E

[ [
x(k)

K(k)v(k)

]′ [
Q S
S′ R

] [
x(k)

K(k)v(k)

]

+

[
x(k)

K(k)v(k)

]′[
A′

B′

]
XN (k+1)

[
A B

][ x(k)
K(k)v(k)

]]
.

After some calculations, we have

E[v′(k)K(k)RK(k)v(k)]

= v′(k)E[K(k)RK(k)]v(k)

= v′(k)E[MRM + (K(k)−M)R(K(k)−M)]v(k)

= v′(k)[MRM+Σ2�R]v(k).

Similarly, we get

E[v′(k)K(k)B′XN (k+1)BK(k)v(k)]

= v′(k)[MB′XN (k+1)BM+Σ2�B′XN (k+1)B]v(k).

Therefore L(k) becomes

L(k) =min
v(k)

{[
x(k)
Mv(k)

]′ [
Q S
S′ R

] [
x(k)
Mv(k)

]
+

[
x(k)
Mv(k)

]′ [
A′

B′

]
XN (k+1)

[
A B

] [ x(k)
Mv(k)

]
+v′(k)[Σ2�(R+B′XN (k+1)B)]v(k)

}

=min
v(k)

{[
x(k)
Mv(k)

]′ [
T1 T ′2
T2 T3

] [
x(k)
Mv(k)

]}
=min
v(k)
{[v(k)−F (k)x(k)]′M ′T3M [v(k)−F (k)x(k)]}

+x′(k)(T1−T ′2T−13 T2)x(k),

where[
T1 T ′2
T2 T3

]
=

[
A′XN (k+1)A+Q A′XN (k+1)B+S
B′XN (k+1)A+S′ W�(B′XN (k+1)B+R)

]
and F (k)=−M−1T−13 T2. From this, we obtain the optimal
control law:

vopt(k)=F (k)x(k)

=−M−1[W�(B′XN (k+1)B+R)]−1

× (B′XN (k+1)A+S′)x(k).

Moreover, the cost-to-go function L(k) is given by

L(k)=x′(k)(T1 − T ′2T−13 T2)x(k)

=x′(k)XN (k)x(k),

where XN (k) is given by (3), as a result of which, the
optimal control cost is given by

L(0)=x′(0)XN (0)x(0).

The proof is completed. 2
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