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Abstract— In this paper, we initiate the study of networked
stabilization via a MIMO communication scheme between the
controller and the plant. Specifically, the communication system
is modeled as a MIMO transceiver, which consists of three
parts: an encoder, a MIMO channel, and a decoder. In the spirit
of MIMO communication, the number of SISO subchannels in
the transceiver is often greater than the number of data streams
to be transmitted. Moreover, the subchannel capacities are
assumed to be fixed a priori. In this case, the encoder/decoder
pair gives an additional design freedom on top of the controller,
leading to a stabilization problem via coding/control co-design.
The controller designer needs to design the encoder/decoder
pair and the controller jointly so as to stabilize the system. We
arrive at a necessary and sufficient condition on the subchannel
capacities under which the coding/control co-design problem is
solvable. Quite surprisingly, the condition is given in terms
of a majorization type relation. As we go along, a systematic
procedure is also put forward to perform the coding/control
co-design. A numerical example is presented to illustrate our
results.

I. INTRODUCTION

As is well known, a MIMO control system refers to a
multi-input multi-output physical system interconnected with
a multi-input multi-output controller, while a MIMO commu-
nication system refers to a MIMO communication structure
deployed to break the capacity limit of the conventional SISO
communication scheme. What will happen if MIMO control
meets MIMO communication? Inspired by this concern, we
investigate in this paper a particular networked stabilization
problem wherein a MIMO communication system is utilized
to transmit the control signals.

Generally speaking, a networked control system (NCS) is
a feedback system wherein the feedback loop is closed over
a communication network. For a better understanding of the
background, we briefly review the state of the art as below. It
has been well recognized that in networked control, whether
stabilization can be achieved or not critically depends on the
information constraints in the communication network. As
such, a primary concern of networked stabilization is to find
a fundamental limitation on the information constraints so as
to render stabilization possible. For a single-input system, the
networked stabilization problem has been extensively studied
under different information constraints. See [1], [16], [20] for
data rate constraint, [7], [8] for quantization, [6] for fading
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effect, and [2] for signal-to-noise ratio constraint, etc. All
these studies converge to a unified fundamental limitation on
the information constraints required for stabilization given in
terms of the topological entropy of the open-loop plant, i.e.,
the logarithm of the absolute product of unstable poles for
a discrete-time plant, or the sum of the unstable poles for a
continuous-time plant.

The story gets more complicated when it comes to multi-
input systems. In many existing works, e.g., [8], [10], [21], a
mere controller design problem is formulated assuming that
the communication network is given a priori. It turns out
that problems formulated in this way are usually very hard to
solve. To mitigate this difficulty, the idea of channel resource
allocation is proposed in [17] and followed by several other
works such as [5], [23], etc. Specifically, it is assumed therein
that the channel capacities can be allocated among different
input channels subject to a total capacity constraint. This in
turn results in a channel/controller co-design problem that is
shown to be solvable, if and only if the total channel capacity
is greater than the topological entropy of the open-loop plant.
A similar idea, although not stated explicitly, can be seen in
[19] which considers networked stabilization over parallel
Gaussian channels subject to a total power constraint.

As remarked in the very beginning, one main motivation of
this work is from the MIMO technology recently developed
in communication theory. It has been widely used in wireless
communication where spacial diversity can be exploited to
increase the data transmission capacity. In this paper, we
are driven to explore the potential advantanges of utilizing
MIMO communication in networked control. In particular,
we shall investigate the stabilization of an NCS wherein a
MIMO transceiver is utilized to transmit the control signals.
The MIMO transceiver has three parts: an encoder, a MIMO
channel, and a decoder. One essential feature of MIMO
communication is that the number of SISO subchannels in
the transceiver is often greater than the number of data
streams. When applied to networked control, this means that
the number of subchannels is greater than the number of
control inputs. We assume that the subchannel capacities are
fixed a priori and, thus, cannot be freely allocated as in [17],
[5], [23]. Nevertheless, the encoder/decoder pair now gives
a substituted design freedom. The controller designer needs
to design the encoder/decoder pair and the controller jointly
so as to stabilize the system. This gives rise to a stabilization
problem via coding/control co-design.

Quite surprisingly, a nice analytic solution is obtained for
the solvability of the above coding/control co-design problem
given explicitly in terms of a majorization type condition.



Majorization is a rather old topic in mathematics [11] and
has been frequently used in statistics in the past 100 years.
However, its engineering applications only appeared recently,
notably in wireless communication, information theory, op-
erations research, and smart grid, etc. The application of
majorization in control theory remains quite scattered in the
literature. One relevant work can be seen in [13], in which
majorization is utilized to investigate remote state estimation
with communication costs.

The rest of this paper is organized as follows. Section II
formulates the problem to be studied. Section III provides
some preliminary knowledge. The main result of this work
is presented in Section IV. A numerical example is worked
out in Section V. Finally, some concluding remarks follow
in Section VI. Most notations in this paper are more or less
standard and will be made clear as we proceed.

II. PROBLEM FORMULATION

Consider the NCS depicted in Fig. 1. Here, the plant [A|B]
is a continuous-time linear time invariant system described
by the state space model

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

where A ∈ Rn×n and B ∈ Rn×m. Assume that [A|B]
is unstable but stabilizable. Let the state x(t) be available
for feedback. If the communication network between the
controller and the plant is ideal, i.e., u(t) = v(t), one can
easily design a state feedback controller v(t) = Fx(t) so
that the closed-loop system is stable. However, such state
feedback design faces challenges when the communication
network is not ideal, i.e., u(t) is only a distorted version
of v(t). In this case, the achievability of stabilization will
depend on the transmission accuracy of the communication
network. In fact, a general concern of networked stabilization
is to find a fundamental limitation on the quality of the
communication network so as to render stabilization possible.
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Fig. 1. State feedback via communication network.

Notice that almost all existing studies, for instance, [5],
[8], [10], [17], [19], [21], [23], assume a SISO communica-
tion scheme between the controller and the plant, i.e., each
control input is to be transmitted through a dedicated SISO
channel. As remarked before, one main motivation of this
work arises from the MIMO technology recently developed
in communication theory. A typical MIMO communication
system is shown in Fig. 2, which is also called a MIMO
transceiver. Here the system between q and p is called a
MIMO channel characterized by a channel matrix H and
an additive white Gaussian noise d. The communication
engineers are dedicated to designing the transmitter matrix T ,
also called an encoder, and the receiver matrix R, also called

a decoder, so as to make the received signal u approximate
the transmitted signal v as accurately as possible. Note that
the MIMO transceiver is often built in such a way that the
dimensions of q and p are much higher than the dimension
of v and u. In connection with the NCS as in Fig. 1, we ask
out of curiosity the following questions: What will happen
if MIMO communication is used in networked control?
Does it offer new advantages? Does it lead to new design
flexibilities?
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Fig. 2. MIMO transceiver, a typical MIMO communication system.

We are also motivated by the following concern. Recall
that the channel resource allocation as in [17], [5], [23] is
based on the crucial assumption that the channel capacities
can be allocated among different input channels subject to
a total capacity constraint. What if the individual channel
capacities are indeed given a priori and not allocatable? In
that case, is it possible to explore some other design freedoms
so as to stabilize the NCSs?

Both motivations lead us to the following problem. Instead
of using a SISO communication scheme as in the literature,
we use a MIMO transceiver as shown in Fig. 2 to transmit the
control signals. For simplicity, we assume that the channel
matrix H in the transceiver is identity. In fact, all the
developments can be extended straightforwardly to the case
of a known nonsingular H . When H is the identity, the
MIMO channel in the transceiver becomes a collection of
l parallel SISO subchannels. To keep the essence of MIMO
technology, we assume that the number of SISO subchannels
in the transceiver is greater than or equal to the number of
data streams to be transmitted, i.e., l ≥ m. Later we will see
that l < m may also be valid in some cases. The encoder
matrix T ∈ Rl×m and the decoder matrix R ∈ Rm×l are
free to be designed subject to a mild constraint RT = I .
The current communication system is shown in Fig. 3.
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Fig. 3. A MIMO transceiver as a MIMO communication system in MIMO
control.

In this paper, each SISO subchannel is modeled as an
AWGN channel, as shown in Fig. 4, where di is a zero-
mean white Gaussian noise with power spectral density Ni.
The channel input signal qi is a stationary process satisfying
the power constraint:

E[q2i ] < Pi, (1)
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Fig. 4. An AWGN subchannel.

with some predetermined admissible power level Pi > 0.
The capacity of such an AWGN channel with input power
constraint Pi is defined as

Ci =
1

2

Pi

Ni
. (2)

Here we do not assume any kind of monotonicity among the
subchannel capacities Ci, i = 1, 2, . . . , l. The total channel
capacity is given by the sum of all the SISO subchannel
capacities, i.e., C = C1 + C2 + · · ·+ Cl.

Due to the predetermined admissible power levels, the
subchannel capacities are now fixed a priori and thus, cannot
be freely allocated among the subchannels as in [17], [5],
[23] any more. Nevertheless, the encoder matrix T and the
decoder matrix R are free to be designed. With this additional
design freedom, the controller designer has to simultaneously
design the controller and the encoder/decoder pair so as to
stabilize the system subject to the input power constraints (1).
This gives rise to a stabilization problem via coding/control
co-design.

Now consider the closed-loop system as in Fig. 5 with a
state feedback gain F such that A+ BF is stable. Assume
that the closed-loop system has reached its steady state and
all the signals are wide sense stationary. According to our
setup, the total noise d =

[
d1 d2 · · · dl

]′ is a vector
white Gaussian noise with power spectral density

N = diag{N1, N2, . . . , Nl}.

The complementary sensitivity function, i.e., the closed-loop
transfer function from d to q, is given by

T (s) = TF (sI −A−BF )−1BR. (3)

Then, the power spectrum density of qi has the expression

{T (jω)NT (jω)∗}ii,

where {·}ii stands for the ith diagonal element of a matrix.
Consequently, the power of qi is given by

E[q2i ] =
1

2π

∫ ∞

−∞
{T (jω)NT (jω)∗}iidω.

It follows that the input power constraint (1) can be rewritten
as

1

2π

∫ ∞

−∞
{T (jω)NT (jω)∗}iidω < Pi.

In view of (2), such constraint can be further translated into

1

2

1

2π

∫ ∞

−∞

{
N− 1

2T (jω)NT (jω)∗N− 1
2

}
ii
dω < Ci. (4)

The objective of this study is to find requirements on the
given subchannel capacities Ci, i = 1, 2, . . . , l, such that the

networked stabilization can be accomplished subject to the
constraints (4) via a judicious coding/control co-design. We
also wish to come up with a systematic procedure on how
to jointly design the controller and the encoder/decoder pair.

F - T - - R - [A|B]
?
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Fig. 5. NCS with MIMO communication.

Note that the subchannel capacity defined as above appears
the same as the Shannon capacity of an infinite-bandwidth
AWGN channel. However, it has been recognized that the
Shannon capacity is in general not enough to characterize the
information requirement for channels in a feedback system
due to the causality constraint in the information processing
in a feedback loop. Recently, several attempts have been
made to define a suitable capacity for channels in a feedback
system from an information-theoretic point of view. See for
instance [18], [15].

Before proceeding, let us recall the notion of topological
entropy [1], [2], [5], [19] of a continuous-time linear system
ẋ(t) = Ax(t), which is defined as the quantity H(A) =∑

R(λi)>0 λi, where λi are the eigenvalues of A.

III. PRELIMINARY

For preparation, some preliminary knowledge is presented
in this section.

A. Cyclic decomposition

Let A be an n × n real matrix. The minimal polynomial
of A is the monic polynomial α(λ) of least degree such that
α(A) = 0. The minimal polynomial of a matrix is unique.
We say that A is cyclic if its minimal polynomial has degree
n, or equivalently, its minimal polynomial coincides with
its characteristic polynomial. The following lemma gives the
cyclic decomposition of a linear system, which plays an
essential role in later developments.

Lemma 1: Given a stabilizable linear system [A|B] with
A ∈ Rn×n and B ∈ Rn×m, there exist nonsingular matrices
P and Q such that

[P−1AP |P−1BQ]

=



A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗ ∗

0 b2
. . .

...
...

...
. . . . . . ∗ ∗

0 · · · 0 bk ∗


, (5)

where Ai, i = 1, 2, . . . , k, are cyclic with minimal polyno-
mials αi(λ), such that α1(λ) = α(λ) and αi+1(λ)|αi(λ)
for i = 1, 2, . . . , k − 1. Moreover, the cyclic subsystems
[Ai|bi], i = 1, 2, . . . , k, are stabilizable.

For the details, one can refer to [9] for the cyclic decom-
position of a matrix and [22] for the cyclic decomposition
of a linear system. Note that the number k as in Lemma 1



is referred to as the cyclic index of A and is unique. The
minimal polynomials αi(λ), i = 1, 2, . . . , k, are also unique.
In addition, from the relation αi+1(λ)|αi(λ), it follows that
the spectrum of Ai+1 is contained in the spectrum of Ai.
Consequently, there naturally holds H(A1) ≥ H(A2) ≥
· · · ≥ H(Ak).

Remark 1: The role of nonsingular matrices P and Q as
in Lemma 1 can be considered as linear transformations in
the state space and input space, respectively. The following
implication can be inferred from Lemma 1. In the cyclic de-
composition (5), A1 contains the greatest number of unstable
eigenvalues of A that can be stabilized by a single input up
to linear transformations in the input space; likewise, A1

together with A2 contains the greatest number of unstable
eigenvalues of A that can be stabilized by two inputs up to
linear transformations in the input space; and so on so forth.

B. Optimal complementary sensitivity

Consider the complementary sensitivity function as in (3).
Assume temporarily that l = m and T = R = I , i.e., the
encoder and decoder are simply trivial, then

T (s) = F (sI −A−BF )−1B.

The following lemma gives a solution to H2 optimal T (s).
Lemma 2 ([4]): There holds

inf
F :A+BF is stable

∥T (s)∥2 = [2H(A)]
1
2 .

Moreover, when A has no eigenvalues on the imaginary axis,
the infimum can be achieved by the optimal state feedback
gain F = −B′X , where X is the stabilizing solution to the
algebraic Riccati equation

A′X +XA−XBB′X = 0.

C. Majorization

For x, y ∈ Rn, we denote by x↑ and y↑ the rearranged
versions of x and y so that their elements are arranged in
a non-decreasing order. We say that x is majorized by y,
denoted by x 4 y, if

x↑
1 ≥ y↑1

x↑
1 + x↑

2 ≥ y↑1 + y↑2
... (6)

x↑
1 + x↑

2 + · · ·+ x↑
n−1 ≥ y↑1 + y↑2 + · · ·+ y↑n−1

x↑
1 + x↑

2 + · · ·+ x↑
n = y↑1 + y↑2 + · · ·+ y↑n.

The physical interpretation of majorization is quite interest-
ing. It orders the level of fluctuations when the averages are
the same. In other words, x 4 y says that the elements of x
are more even or, less spread out, than the elements of y.

Now, if the last equality in (6) is changed to an inequality
≥, then x is said to be weakly majorized by y from above,
denoted by x 4w y. Furthermore, if all the inequalities
≥ in (6), including the last equality, are changed to strict
inequalities >, then x is said to be strictly weakly majorized
by y from above, denoted by x ≺w y. Note that when two

vectors are compared via majorization or weak majorizations,
the order of the elements in the vectors is irrelevant.

The following lemma characterizes the relation between
majorization and weak majorization.

Lemma 3 ([14]): x 4w y (x ≺w y, respectively), if and
only if there exists z such that x ≥ z (x > z, respectively),
and z 4 y.

Another useful lemma is given below.
Lemma 4 ([14]): There exists a real symmetric matrix

X with eigenvalues λ1, λ2, . . . , λn, and diagonal elements
d1, d2, . . . , dn, if and only if[

d1 d2 · · · dn
]′ 4 [

λ1 λ2 · · · λn

]′
.

When the majorization condition in Lemma 4 is satisfied,
efficient algorithms for finding the desired symmetric matrix
X have also been developed in the literature. See for example
[3].

IV. MAIN RESULT

The main result of this paper is presented in the following
theorem. The necessity proof is omitted due to page limit.
The sufficiency proof is constructive and gives a systematic
way to perform the coding/control co-design.

Theorem 1: [A|B] is stabilizable via MIMO communica-
tion over AWGN subchannels, if and only if[
C1 C2 · · · Cl

]′
≺w

[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
, (7)

where H(Ai), i = 1, 2, . . . , k, are the topological entropies
of the cyclic subsystems [Ai|bi] as in (5).

Proof of Sufficiency: For brevity, assume that all the eigen-
values of A lie in the open right half complex plane. This
assumption can be removed following the same arguments
as in [2], [5], [17], [23].

To show the sufficiency, we will seek a state feedback gain
F together with an encoder matrix T and a decoder matrix
R such that the NCS is stabilized and the constraints (4)
are satisfied. Without loss of generality, assume that [A|B]
is in the cyclic decomposition form (5), where each cyclic
subsystem [Ai|bi], i = 1, 2, . . . , k, is stabilizable with state
dimension ni. For each [Ai|bi], we can design a stabilizing
state feedback gain fi such that ∥Ti(s)∥22 = 2H(Ai), where

Ti(s) = fi(sI −Ai − bifi)
−1bi. (8)

The existence of such fi is guaranteed by Lemma 2. Let

f = diag{f1, f2, . . . , fk} and design F =

[
f

0(m−k)×n

]
. It is

easy to verify that F is stabilizing, i.e., A + BF is stable.
Regarding the encoder/decoder pair, let

T = N
1
2UD−1, and R = DU ′N− 1

2 , (9)

where U ∈ Rl×m is an isometry to be designed and D =
diag{1, ϵ, . . . , ϵm−1} with ϵ being a small positive number.
Also set S = diag{In1 , ϵIn2 , . . . , ϵ

k−1Ink
}. Then

T (s) = TF (sI −A−BF )−1BR

= N
1
2UF̄ (sI − Ā− B̄F̄ )−1B̄U ′N− 1

2 ,



where

F̄ = D−1FS = F,

Ā = S−1AS =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak

 ,

B̄ = S−1BD =


b1 o(ϵ) · · · o(ϵ) o(ϵ)

0 b2
. . .

...
...

...
. . . . . . o(ϵ) o(ϵ)

0 · · · 0 bk o(ϵ)

 ,

and o(ϵ)
ϵ approaches to a finite constant as ϵ → 0. It follows

that
1

2

1

2π

∫ ∞

−∞
N− 1

2T (jω)NT (jω)∗N− 1
2 dω

= U

(
diag

{
∥T1(s)∥22

2
, . . . ,

∥Tk(s)∥22
2

, 0, . . . , 0

}
+ o(ϵ)

)
U ′

= U (diag{H(A1), . . . ,H(Ak), 0, . . . , 0}+ o(ϵ))U ′.
(10)

When the relation (7) holds, by Lemma 3, there exists a
vector

[
γ1 γ2 . . . γl

]′ such that[
C1 C2 . . . Cl

]′
>

[
γ1 γ2 . . . γl

]′
, (11)

and[
γ1 γ2 · · · γl

]′
4

[
H(A1) H(A2) · · · H(Ak) 0 · · · 0

]′
. (12)

Further, in view of (12) and Lemma 4, an isometry U can
be constructed such that

{U (diag{H(A1), . . . ,H(Ak), 0, . . . , 0})U ′}ii = γi, (13)

for i = 1, 2, . . . , l. Finally, putting (10), (11), and (13)
together, we can verify that the constraints (4) are satisfied
when ϵ is sufficiently small. This completes the proof. �

Let us now revisit the coding/control co-design from a
more intuitive perspective. In order to stabilize the NCS,
each control input requires certain communication resource
for transmission. As such, the control inputs can be regarded
as the demand side for communication resource, while the
SISO subchannels in the transceiver can be regarded as the
supply side. The supply capabilities of the subchannels are
characterized by their capacities and are fixed a priori. The
challenge lies in the fact that the demand and supply may not
match in general. To resolve such demand/supply imbalance,
the coding mechanism plays a crucial role by shaping the
demands judiciously so as to match the supplies. For com-
parison, the channel/controller co-design utilized in [17], [5],
[23] does the exact opposite, i.e., tailoring the supplies so as
to match the demands. It is worth mentioning that demand
shaping is a quite general principle in economics. It has led
to many successful stories in engineering fields as well such
as power systems, transportation, and data networks, etc.

What follows is an important implication from Theorem 1.
Note that we initially assume that the number of SISO
subchannels in the MIMO transceiver is greater than or
equal to the number of data streams to be transmitted, i.e,
l ≥ m. It turns out that in some cases, it may also be
possible to stabilize the NCS with a smaller number of
SISO subchannels than the number of data streams. This
can be inferred from the majorization type condition (7).
In fact, the minimum number of SISO subchannels needed
for stabilization is equal to the number of unstable cyclic
subsystems [Ai|bi] yielded from the cyclic decomposition
(5). This observation is consistent with earlier studies [12],
[22] in the literature that investigate the minimum number
of control inputs required to stabilize a linear system. In
that aspect, our result strengthens those studies by indicat-
ing a fundamental limitation on the information constraints
required for networked stabilization given in terms of a
majorization type relation.

One can further deduce the following two corollaries from
Theorem 1. The proofs are omitted here for brevity.

Corrollary 1: If the cyclic decomposition of A has only
one unstable cyclic block, i.e., A1, then [A|B] is stabilizable
via MIMO communication over AWGN subchannels if and
only if C > H(A).

Corollary 1 is consistent with the result obtained in [19].
Also note that Corollary 1 includes the single-input system
as a special case since a stabilizable single-input system only
has one unstable cyclic subsystem. Therefore, this corollary
suggests that in stabilizing a single-input system via MIMO
communication, we only require the total capacity to be
greater than the topological entropy of the open-loop plant.
How the individual subchannel capacities are distributed does
not matter in this case.

Corrollary 2: If C1 = C2 = · · · = Cl, then [A|B] is stabi-
lizable via MIMO communication over AWGN subchannels
if and only if C > H(A).

Corollary 2 somehow suggests that identical subchannels
can best help each other in transmitting the signals.

V. EXAMPLE

Consider the following unstable system [A|B]:

A =


4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 , B =


1 1
1 1
1 1
0 1

 .

Clearly, [A|B] is stabilizable. Moreover, it is already in the
cyclic decomposition form (5) with cyclic subsystems

[A1|b1] =

4 0 0
0 2 0
0 0 1

∣∣∣∣∣∣
11
1

 , and [A2|b2] = [1|1].

It follows that H(A1) = 4 + 2 + 1 = 7, and H(A2) = 1.
Consider a MIMO transceiver with three subchannels. Let

the noise power spectral density be N = I . The admissible
transmission power levels in the subchannels are given by

P1 = 9.1, P2 = 3.1, and P3 = 4.1.



In view of (2), the subchannel capacities are

C1 = 4.55, C2 = 1.55, and C3 = 2.05.

One can now verify that the majorization type relation as
in (7) holds and, thus, the networked stabilization can be
accomplished via certain coding/control co-design. One such
co-design is carried out as below.

For the controller design, we solve the H2 optimal Ti(s)
as in (8) for each cyclic subsystem [Ai|bi], i = 1, 2, yielding
the optimal feedback gains f1 =

[
−40 36 −10

]
and f2 =

−2, respectively. Let

F = diag{f1, f2} =

[
−40 36 −10 0
0 0 0 −2

]
.

For the coding design, let the encoder matrix T and the
decoder matrix R be as in (9) with

U =

 0.7817 0.4714
0.4629 0
−0.4179 0.8819

 and D =

[
1 0
0 0.1

]
.

With this co-design, we observe that the closed-loop poles
are exactly the mirror images of the open-loop poles with
respect to the imaginary axis. This validates the stability of
the closed-loop system. Moreover, further computation yields

E[q21 ] = 9.0848 < P1,

E[q22 ] = 3.0299 < P2,

E[q23 ] = 4.0249 < P3,

i.e., the input power constraints (1) are satisfied. Combining
these two observations, we see that the networked stabiliza-
tion is accomplished via this coding/control co-design.

VI. CONCLUSION

This paper investigates the stabilization of an NCS wherein
the communication system between the controller and the
plant is modeled as a MIMO transceiver. The capacities of
the subchannels in the MIMO transceiver are fixed a priori
and, thus, not allocatable. Nevertheless, the encoder/decoder
pair provides an additional design freedom on top of the con-
troller, leading to a stabilization problem via coding/control
co-design.

It is shown that such coding/control co-design problem is
solvable, if and only if the majorization type condition (7) is
satisfied. The condition (7) relates the subchannel capacities
required for stabilization to the topological entropies of the
cyclic subsystems of the open-loop plant via a majorization
type relation. This, on the other hand, gives an application of
majorization in control theory. When the relation (7) holds,
a systematic procedure is also put forward to carry out the
coding/control co-design.

In this paper, the subchannels in the MIMO transceiver are
modeled as AWGN channels. The idea can be extended to
handle other channel models as well. In the future, we wish
to find more connections between communication theory and
control theory. Also, more applications of majorization in
control theory are to be explored.
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