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NETWORKED ROBUST STABILITY FOR LTV SYSTEMS WITH
SIMULTANEOUS UNCERTAINTIES IN PLANT, CONTROLLER
AND COMMUNICATION CHANNELS*

TIANQIU YUT, DI ZHAO¥, AND LI QIU#

Abstract. In this paper, we study the robust stability of a networked control system
(NCS) under the framework of infinite-dimensional discrete-time linear time-varying (LTV) systems.
The NCS consists of a pair of uncertain plant and controller, as well as an uncertain bilateral
communication channel in between. The uncertainties in the plant and controller are measured by
the gap metric. The communication channel between the plant and controller is described by a
cascade of two-port networks whose transmission matrices are subject to norm bounded additive
uncertainties. Such an uncertain two-port network can model distortions and interferences occurring
during control and measurement signal transmissions. The causality of the LTV subsystems is
characterized by using nest algebras. A necessary and sufficient condition for the robust stability
of the NCS, with the causality of all system components explicitly considered, is established in the
form of an arcsine inequality, which generalizes a similar result for linear time-invariant NCSs.

Key words. networked control system, robust stability, two-port network, gap metric, linear
time-varying system
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1. Introduction. Robust stability of feedback systems has attracted a
considerable amount of attention over the past few decades. In networked control
systems (NCSs), due to the presence of distortions and interferences in the signal
transmission, the uncertainties exist not only in modeling the plants and controllers
but also in the communication channels in between. Hence the study of robust
stability of such NCSs poses new challenges. In this paper, we study robust stability of
NCSs under the framework of discrete-time linear time-varying (LTV) systems. The
uncertainties in the plant and controller are measured by the gap metric. The bilateral
communication channel between the plant and controller is described as a cascade of
two-port networks whose transmission matrices are subject to norm bounded additive
uncertainties. The causality of the LTV subsystems is characterized by using nest
algebras.

The gap metric was initially introduced to control literature for the study of
robust control of linear time-invariant (LTI) systems by Zames and El-Sakkary [41].
It was shown a few years later by Georgiou [21] that the gap metric is computable
exactly in terms of standard “two-block” H., optimization problems. Based on
this computation result, a rather comprehensive analysis and synthesis theory was
developed by Georgiou and Smith in [22]. The LTI gap metric and its variants, as
well as the associate robust control theory, have also been extensively studied in the
last three decades [21, 22, 25, 32, 33, 35, 36, 37]. In terms of simultaneous uncertainties
measured by the gap [33], pointwise gap [32] and v-gap [36], the tight robust stability
conditions have been obtained, respectively.
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2 T. YU, D. ZHAO, AND L. QIU

The extension of LTI robust control theory to LTV systems is also underway.
With the development of H., control theory, significant insights have been obtained
by considering its time-varying analogue, a control theory in the framework of the
nest algebra of causal bounded operators on an appropriate complex Hilbert space of
input-output signals [16]. Such a theory for LTV systems generalizes the Hy, control
theory in the sense that the systems are considered as linear operators on the Hilbert
signal spaces. In the context of LTV robust control theory, the gap metric has also
played an important role [10, 11, 14, 16]. Feintuch [13] generalized the two-block H,
optimization method for the computation of the gap in [21] to the LTV case. This
was achieved by introducing the time-varying gap metric [13, 16], which is different
from the standard gap metric for LTV systems. A sufficient condition and a necessary
condition have been obtained in [16] for robust stability of LTV systems under plant
uncertainty measured by the directed time-varying gap, respectively. These two
conditions are different in the time-varying case. A more general geometric framework
for robust stabilization of feedback systems using operator-theoretic methods has
been developed in [5, 19]. Specifically, a necessary and sufficient condition for robust
stability under simultaneous gap-metric uncertainties of the plant and the controller
was presented in [19], which is a generalization of the arcsine condition of [33] to the
time-varying case, but the causality of systems is not considered.

In the continuous-time context, a time-varying generalization of Vinnicombe’s
v-gap was presented in [3, 4, 29] for causal linear systems. Accordingly, a time-
invariant v-gap robust stability result extends with respect to a definition of closed-
loop stability. It is shown that the generalized v-gap metric and an adaptation
of Feintuch’s time-varying gap metric give rise to the same topology and thus
qualitatively equivalent robust stability results [3], in which the development also
corrects various aspects of the results in [4] and [29].

Networked control systems (NCSs) are feedback control loops closed via a real-
time shared media network [38]. The difference between the NCS and the standard
feedback system lies in the presence of a communication network, which is deployed to
exchange information, between the plant and controller. In networked environments,
the bidirectional control signals are transmitted through imperfect communication
channels for most practical systems. Due to the presence of channel distortions and
interferences, it is necessary to consider the channel uncertainties when investigating
the feedback stability. In this paper, a two-port NCS model is developed under
the framework of discrete-time LTV systems. by extending the standard closed-loop
system (Fig. 1) to the feedback system with cascaded two-port connections (Fig. 3).
Such an NCS model is motivated by the application scenario of stabilizing a feedback
system, where the plant and controller cannot communicate directly and the signals
can only pass through the communication network consisting of a sequence of relays,
such as, satellite networks [1], wireless sensor networks [2] and so on. Furthermore,
each communication channel between two neighbouring relays can be viewed as a
subsystem that involves not only multiplicative distortions on the transmitted signal
itself, but also additive interferences induced by the signal in the opposite direction.
Such a phenomenon is usually encountered in a bidirectional wireless network subject
to communication error caused by channel loss, fading or some malicious attacks.

Two-port networks first appeared in electrical circuit theory [6, 7], and were
later borrowed to represent LTT systems in chain-scattering formalism [28]. Recently,
a two-port approach was taken in [20] to model the communication channel in a
networked feedback system. More specifically, the robust stability of the networked
feedback system was investigated under the framework of H, control. Later in [39],
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NETWORKED ROBUST STABILITY FOR LTV SYSTEMS 3

a concise necessary and sufficient robust stability condition was obtained for the
continuous-time LTI networked control systems with the uncertain communication
channels described by cascaded two-port networks. Furthermore, in this study, the
robust stability of cascaded two-port NCSs is investigated in the framework of discrete-
time causal LTV systems. In particular, we model a discrete-time LTV system as a
(possibly unbounded) linear operator described by a block lower-triangular infinite-
dimensional complex matrix due to the causality of the system. The system is said
to be stable if the operator is bounded in norm. Particularly, the uncertainty in a
two-port channel is described by a stable LTV system additive to the transmission
matrix of the two-port network. Regarding norm bounded uncertainties in the
communication channels as well as standard gap bounded uncertainties in the plant
and controller, we present a necessary and sufficient condition for robust stability of
the cascaded two-port NCS in the form of an arcsine inequality, which generalizes of
the main results in [39] to the LTV case.

The rest of the paper is organized as follows. In Section 2, we introduce the
main definitions, terminology, some auxiliary propositions, and the NCS model to be
studied in this paper. In Section 3, we first examine the robust stability of a special
case with only one uncertain two-port network in the communication channel via the
small gain theorem, then present the robust stability result for a general LTV NCS
with simultaneous uncertainties. Last in Section 4, we conclude with a summary of
the contributions of this paper.

2. Preliminaries. In this section, general definitions and the mathematical
background used throughout the paper are introduced. Denote by C the set of
complex numbers, and by C™ the space of n dimensional complex vectors. Let
X,Y be Hilbert spaces and consider a linear operator A : D(A) C X — ), where
D(A) = {x € X : Ax € Y} is the domain of A. The range and kernel of A are defined
to be R(A) := {Az : « € D(A)} and K(A) := {z € D(A) : Ax = 0}, respectively.
The operator A is said to be bounded if there exists a positive constant ¢ such that
|[Az|| < ¢||z| for all z € D(A). Let B(X,Y) denote the Banach space of all bounded
linear operators A : X — ) endowed with the operator norm

[All:= sup [[Az],
zEX,||z||=1
and let 7(4) ;==  inf  ||Az| and B(X) := B(X,X). For A € B(X,)Y), denote by

zEX,||z||=1
A* € B(Y, X) the Hilbert adjoint of A. An operator A € B(X,)) is called an isometry
if A*A = I. Furthermore, A € B(X,)) is called a unitary operator if A*A = AA* = 1.
Finally, for a subspace M of X', M~ is the orthogonal complement of M, and Il is
the orthogonal projection onto M. The restriction of A to M C X is A|aq, which is
from M to Y. For z € X,y € ), we denote by y ® z a rank-one operator defined by
(y ® 2)x := (x, 2)y, Vo € X, where (-,-) denotes the inner product on X.

2.1. LTV systems. In this paper, we model a linear system as a (possibly
unbounded) linear operator mapping between signal spaces. A typical choice for the
input and output spaces is the complex separable Hilbert space

oo
hy = {(xo,xl,...,xk,mk+1,...) cw; € (C”,Z l|l2il|2. < oo},

=0
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4 T. YU, D. ZHAO, AND L. QIU

with the inner product and norm in the following form:

oo oo %
(y) = 3 i gden, 2] = (Z ||zi|én> -
i=0 =0
Here || - ||c» and (-,-)c» denote the standard Euclidean norm and inner product on

C", respectively. Denote by h™ := {(z0,®1,..., &%, Tp41,...) : & € C"} the set of all
time sequences, which is the extended space of hj.

For each integer k£ > 0, E} denotes the standard truncation projection from h%
or h™ onto the subspace N} = {(330,:101, cey Xk, 0,.00) 12y € (C"}; that is,

Erx); = -
(Bi): {0, otherwise.

Define ||z||x := ||Exz|| for each & > 0 for x € h™. Then {|| - |lx : k > 0} is a
separating family of semi-norms on h"™ and defines on A" a metrizable topology,
called the resolution topology on h™ [16, Chapter 5]. The extended space h" is the
completion of hY with respect to this topology. The set {E) : 0 < k < oo} is used to
introduce the physical definition of causality for linear systems.

DEFINITION 2.1 ([16, Chapter 5]). Let P : h™ — h™ be a linear operator.

(i) P is causal if, for each k > 0, Ex,P = E,PEj,.

(ii) P is a linear time-varying (LTV) system if P is a causal linear operator that
is continuous with respect to the resolution topology.

We denote by L™ the set of all LTV systems from h"™ to h™. For P € L™™ it
follows from [16, Theorem 5.2.6] that P can be described as a block lower-triangular
complex infinite matrix (not necessarily a bounded operator). As a result, y = Px
can be expressed by

Yo Py zg
Y1 Py P 1

ya| = | Poo Por Pa2 ZTo | o

where P;; is a m x n matrix. It was shown in [15] that P is a closed operator, i.e.,
Gp = { fo] NS D(P)} is a closed subspace of hi 1™ := h% @ h*. This subspace

is called the graph of P.

A system P € L™ is stable if its restriction to A% is a bounded operator. Since
P e L™™ is a closed operator, it follows from the closed graph theorem [26] that P
is stable if and only if Ph% C h3'. In the case when n = m, the set of all stable LTV
systems on h%, denoted by S™", is a weakly closed algebra containing the identity,
where n is any positive integer. Indeed, ™™ is a nest algebra [9] determined by
the complete nest {Fphy : —1 < k < oo} on hf, where Fj, := I — Ej, Fy := 0 and
F_1 := I. In the sequel, the spatial dimensions n and m are often dropped for
notational convenience. Throughout this paper, for P € £ or S, let Py be the kth
main-diagonal block of P and

Py,
P(k) == Plpx = | Dot1 v Prt1pm

Thi. iscript s fi cVIEeW PUTPOSE:
This manuscript is for review purposes only
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NETWORKED ROBUST STABILITY FOR LTV SYSTEMS 5
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Fic. 1. Standard closed-loop system.

where X = h or hs.

The invertibility property of elements in £ and & has been shown to be critical
for the study of feedback systems. Invertibility in £ is a purely algebraic property:
P is invertible in £ if and only if it has no singular elements on its main diagonal.
In other words, P is invertible in £ if and only if Py is invertible for each k& > 0.
While invertibility in S is a topological property: P is invertible in S if and only if
P is invertible in £, and ||(ExPEx|g,n,) | is uniformly bounded on Ejhs. We will
say that P is invertible if P is invertible in £. The system P is stably invertible if P
is invertible in S; that is, P has a bounded causal inverse.

2.2. Feedback systems. The closed-loop system in Fig. 1 is denoted as P#C,
where P € L represents the plant and C € L the controller. The closed-loop system

P#C is said to be well-posed if the internal signal e = El} can be expressed as a
2

causal function of any external input u = {Zl} . This is equivalent to requiring that
2

[IID ?} is invertible, and its inverse is given by the four-block operator

(I-CcP)"'  —C(I-PC)
H(P,0) = [—P(I —CP)' (I-PO)! }

In order for H(P,C) to exist, I — PC and I — C'P have to be invertible. Hence, P#C
is well-posed if and only if I — PC is invertible. Clearly, a sufficient condition for
the well-posedness is that P or C' has all zeros on its main diagonal, i.e., it is strictly
causal.

DEFINITION 2.2. The closed-loop system P#C is stable if

I C
P I

} . D(P) & D(C) — ha

has a bounded causal inverse defined on hs; that is, H(P,C) € S. A system P is said
to be stabilizable if there exists a controller C such that P#C' is stable.

The stability of feedback systems is closely related to the existence of coprime
factorizations. We introduce the right and left coprime factorizations for LTV systems
in the following.

DEFINITION 2.3 ([15]). Let P € L.
(i) P = NM~! is a right coprime factorization of P if M and N are causal,

bounded operators, and has a causal, bounded left inverse.

M
N
The right coprime factorization is normalized if M*M + N*N = 1I.

This manuscript is for review purposes only.
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F1a. 2. A single two-port network

(i) P = M=IN is a left coprime factorization of P if M and N are causal,
bounded operators, and [N M] has a causal, bounded right inverse.
The left coprime factorization is normalized if MM* + NN* = 1.

The following result can be found in [16].

LEMMA 2.4. Let NM~! be a right coprime factorization of P € L, VU™! and
U=V be right and left coprime factorizations of C' € L, respectively. The following
statements are equivalent:

(i) P#C is stable.

(ii) UM + VN is stably invertible.

(iii) B\/{ ‘(ﬂ is stably invertible.

In the discrete-time time-varying case, a system is stabilizable if and only if it has
right and left coprime factorizations [12]. Moreover, these factorizations can always be
normalized [16]. The equivalence between the existences of a right and a left coprime
factorization was obtained in [31]. These results can be summarized in the following
theorem.

THEOREM 2.5. Let P € L. The following statements are equivalent:
(i) P is stabilizable.

(ii) P has a (normalized) right coprime factorization.

(iii) P has a (normalized) left coprime factorization.

2.3. Two-port networks as communication channels. The use of two-port
networks in electrical circuits theory [6], [7] as a model of communication channels is
adopted from [20] and [39]. In this subsection, we present the time-varying analogue
of networked control systems (NCSs) involving cascaded two-port connections. The
network 7T in Fig. 2 has two ports, where v and w compose one port and u,y
compose the other. In general, the downlink transmission from v to u and the uplink
transmission from y to w share the two-port network 7T'. In this study, we will focus
on the transmission representation of 7. Define the transmission matrix 7, and the
descriptions of the communication channel as

Tll T12 v (3
T: and :T .
[Tm Too w y
Here, the symbol T denotes both the two-port network and its transmission

representation for notational simplicity. In the case that the communication is ideal,
i.e., the channel has no distortions or interferences, the transmission matrix is T =

r0 . When the bidirectional channel admits both distortions and interferences,

0 I
we model the transmission matrix in the following form:
. I+ AL A
T=I+a=1 A" 11,

This manuscript is for review purposes only.
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F1a. 3. An NCS with two-port connections

AL A_
Ap Ay
are used to model the transmission distortion. The off-diagonal terms A_, Ay are
used to model the channel interference. The four-block operator matrix A is called
the uncertainty quartet. A more detailed analysis of the network uncertainty A can
be found in [20] and [39].

In the following, we introduce the two-port network into the standard feedback
system P#C, where P,C € L. Assume that P and C admit the right coprime
factorzations P = NM~! and C = VU™, respectively. In Fig. 3, the plant P and
controller C' communicate with each other through a two-port network. Considering

the input and output of P, we obtain that B] = {I} u = [M] M~1u, for any u € hy

where A = ] € § with ||A]| < r, r € (0,1]. The diagonal terms A=+, Ay

P N

N
Consider the transmission representation of the two-port networks {T;}!_;. If the
i-th stage of the network admits an uncertainty A; € S, then the transmission matrix
is given by T; = I + A,;. For each integer i € (0,1), we can associate the first ¢ stages
of the cascaded two-port networks with the plant P, and the remaining [ — i stages
with the controller C. It follows from similar derivations as in [39] that signals satisfy
the following relations:

such that M ~1u € hy. Or, Lﬂ = [M} x for any x € ho.

[Z] =TT T m =T +A)T+ A1) (I+A) m ,

v; e _i v _ _ i |v
= rrye o 2] = s 0 A s a0 1)
Regarding these relations, we view P together with {7 };-:1 as a perturbed plant P/
with uncertainties {A;}%_,. Then P/ = N;M;! can be determined by its graph:

M;

3

:| h2 == (I + Av)(f + Ai—l) e (I + Al)gp.

Similarly, we view C together with {T}}!_; | as a perturbed controller C} with
uncertainties {A;},_; ;. Then C} = V;U;"! can be determined by its inverse graph:

(2.2) Gor = [ZZ] ho = (I+ Ajp1) "I+ Agya) ™ (T + A)7'GE,

Vv
v

For convenience, we regard ¢ = 0 as the situation where all the two-port networks
are grouped with C, and ¢ = [ as the situation where all the two-port networks are
grouped with P, i.e., Pj = P and C] = C. In addition, since A; € S and ||A;]| < 1, it

where the inverse graph G of C' = VU™ is defined as Go = ha.

This manuscript is for review purposes only.



279
280
281
282
283

DNXO
oo
(G

286
287

288

289

8 T. YU, D. ZHAO, AND L. QIU

follows that I+ A; is stably invertible. Then (M;, N;) and (V;, U;) are right coprime,
respectively. In order to keep the perturbed plants P! and controllers C! well-defined,
we add a mild condition on A;, so that M; and U; are invertible. In the following, we
extend the definition on the stability of the two-port NCS in [39] to the time-varying
case.

DEFINITION 2.6. The NCS in Fig. 3 is said to be stable if the perturbed closed-loop
system P/#C! is stable for i =0,1,... 1.

2.4. The gap metric for LTV systems. We briefly introduce, in this
subsection, some key concepts and main properties of the gap metric for LTV systems.
Let X and Y be two closed subspaces of a Hilbert space H, and let Iy and IIy be
the orthogonal projections on X and ), respectively. The gap (or aperture) between
the two subspaces is the metric defined as

(X, D) = [Ty — Iy ||

(see [26] and [27]). Tt is shown in [27, p. 205] and [16] that v (X,)) = max{J(X,)),

F(¥,X)}, where 4(X,Y) = ||(I — Hy)dx| is the directed gap. This equation
can be written in the equivalent form: #(X,)) = sup  dist (z,)), where
zeX,|z||=1

dist(z,) 1= inf [l = yl| = |(I = Ly)a].

PROPOSITION 2.7 ([16] and [27]). Let X and Y be two closed subspaces of a
Hilbert space H. Then Iy maps X one-to-one onto Y if and only if v(X,)) < 1.
Moreover, if v(X,Y) < 1, then v(X,Y) =74(X,Y) =5V, X).

The gap between LTV systems P, and P, € L is defined to be the gap between
their respective graphs as follows:

§(Pr, P2) :==v(Gp,,Gp,) -
The gap ball centered at P € £ with radius r € (0,1] is then given by
B(P,r):={P" € L:§(P',P)<r}.
The next result shows that the gap between two stabilizable systems is not less

than the gap between their respective restrictions to the truncation subspaces.

PROPOSITION 2.8. Assume that Py, Py € L are stabilizable. Then for k > 0,
6 ((P1)kks (Po)rr) < 6(P1, P2), 0(Pi(k), Pa(k)) < 6(P1, P2)

Proof. We prove the first inequality below. The proof of the second can be shown
similarly. Let 6(P;,P») = r. Then r € [0,1]. Clearly, the case r = 0 or 1 is
trivial. Thus 0 < r < 1 is assumed. Let P, = N M| ! be a normalized right
coprime factorization. Then it follows from [16, Corollary 10.1.4 and Theorem 10.4.1]

Fl] H < r such that (N; 4+
A
Ay)(M;+A;)~!is aright coprime factorization of P,. For each k > 0, it is easy to see

_ — — —1
that (P1)er = (N1)ke(M1)e and (Po)ie = (N1 gk + (B2)ikk) (M1)rr + (A1)kr)
are right coprime factorizations of (Pj)gr and (Ps)gk, respectively. Moreover,

[Eilikk] < r. Therefore, we obtain 6 ((Py)gk, (P2)kk) < 7 = §(P1, P2). 0
2)kk

that there exist causal, bounded operators Ay, Ay with

This manuscript is for review purposes only.
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314 Based on the uncertainty quartets in equations (2.1) and (2.2), two special
315 uncertainty neighborhoods are as follows.
316 DEFINITION 2.9. Assume that P € L and P = NM™! is a right coprime
317 factorization. For r € (0,1], define
_1 L [M] M
318 Ni(P,r) = {P’:N’(M’) L. V| =(I+A) [N]’
319 AeS, ||Al <r, Mis invertible};
_q [ 1 |M
320 No(P,r) = {P’ = N'(M")7 ' V| = (I+A)7! [N} ,
321 AeS, |Al<r, Mis invertible}.
322
323
324 In the time-invariant case, the above neighborhoods of a linear time-invariant
325 system G are introduced in [23] and [24]. From [24], we know for r € (0, 1],
326 (2.3) Nl(G,T’) UNQ(G, r) C B(G,r).
327 In what follows, we extend relation (2.3) to the time-varying case.
328 PROPOSITION 2.10. Let P € £ and r € (0,1]. Then
338 Nl(P7T)UN2(P7T)CB(PaT)'
331 Proof. If P! € N1(P,r), then Gpr = (I+A)Gp. From the definition of the directed
332 gap, it follows that
— T+ A)xr —
333 ¥(Gp,Gpr) = sup inf ly = ] = sup inf I+ Az, = 2 il
334 042€Gp 0AYEG P/ ||.T|| 0#£zeGp 07T1E€0P ||$H

335 Since NM~1 is a right coprime factorization of P, then, by [16, Theorem 6.3.8], there
MQ
NQ

337 projection on Gp is given by Ilg, = B\ﬂ QQ*[M* N*]. This shows

336 exists stably invertible Q € S such that [ ] is an isometry. Thus, the orthogonal

M’ M M
338 g, || = I+ Q*[M* N*]A -t
399 or || = [¥] @ (r+apr a1 [{] o)
M A M
340 Note that ||Q*[M* N*]A [N} QH < ||A|l < 1 implies that I + Q*[M* N*]A [N} Q

341 is invertible in B(hg). Thus, IIg, maps Gp/ one-to-one onto Gp. By Proposition 2.7,
312 we have v(Gp,Gp) = Y(Gp:,Gp) = Y(Gp,Gp:) < r. This proves N1 (P,r) C B(P,r).

343 By Definition 2.9, we have P’ € No(P,r) & P € N1(P',r). Since P’ € B(P,r) &
344 P e B(P',r), it follows that Na(P,r) C B(P,r). This completes the proof. O
345 3. Main results: networked robust stability. In this section, we are

346 interested in the robust stability conditions for the NCS shown in Fig. 3 when
347 the plant, controller and communication channels are subject to simultaneous
348 perturbations. First, the situation where a single two-port network is perturbed is
349 considered. Then the general case of the networked robust stability in the face of
350 simultaneous perturbations to the plant, controller and communication channels is
351 investigated.

This manuscript is for review purposes only.
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Fic. 4. Two-port NCS with one stage of two-port network

A

Y

P#C |

F1a. 5. Standard closed-loop system equivalent to one-stage two-port NCS

3.1. One-stage two-port NCS. In this subsection, the robust stability result
for the one-stage two-port NCS is established when norm-bounded perturbations to
the network alone are considered. Before proceeding to the NCS, we introduce the
following operator associated with a standard feedback system, which plays a crucial
role in robust stability analysis [16]. Given a well-posed feedback system P#C', and
with a little abuse of notation, we let

PHC = Lﬁ,] (I-CP)"'[I —Cl.

Observe that P#C = {é OI} H(P,C)+ [8 ﬂ . Therefore, the stability of P#C is

equivalent to the boundedness of P#C. When P#C is stable, the value ||P#C|~!
is often called the robust stability margin.

Following the derivation in [20], we equivalently transform into that in Fig. 5 to
form a standard closed-loop system (P#C)#A. Therefore, suppose that the nominal
system P#C is stable, then the one-stage two-port NCS is stable if and only if
(P#C)#A is stable. The robust stability of this system can be analyzed through
the following asymptotic small-gain result.

LEMMA 3.1. Let A € S and r € (0,1]. Then I — AA is stably invertible for all
A € S with ||A]| <7 if and only if

1 1
(3.1) 7 < min )T -
sup [|Agkll” inf [|A(F)||
k>0 J=0
1
Proof. If r < ———— then for all £ > 0, we have r < ———. Thus,
21;18\\/11@1@” | Akl

|AkkAkk|| < 1. By small-gain theorem, we obtain that 1 is not an eigenvalue of
Ay A for each k > 0. Thus, I — AA is invertible. Conversely, assume that I — AA
is invertible for all A € S with ||A]| < r. For all matrices Ay, with HAkkH <,
construct a block diagonal operator A such that A;; := Ay for i = k,and A;; :=0
otherwise. Clearly, A € § and ||A]| < r. By hypothesis, I — AA is invertible. Then
for each k > 0, (I — AA)gr = I, — AppAgs is invertible for all matrices Apr with

This manuscript is for review purposes only.
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|Agkll < 7, where I,, is the identity matrix. Hence, it follows from [40, Theorem 8.1]

that r < for each k > 0, which shows that r < Finally, similarly

| A sup || Agell’
k>0

to the proof of [17, Theorem 4.2], we know that (I — AA)~! € S for all A € S with

[[A]] < 7 if and only if r < . This completes the proof. O

A
inf A

It is worth noting that the first term in inequality (3.1) is equal to

sup || Agk ||
k>0
infinity under the hypothesis in [17, Theorem 4.2]. An application of Lemma 3.1

gives rise to a necessary and sufficient condition for robust stability of the one-stage
two-port NCS.

THEOREM 3.2. Let P#C be stable and r € (0,1]. Then the two-port NCS in
Fig. 4 is stable for all A € S with ||A|| < r if and only if

1 1
sup [(P#C)l” inf [(PHC) ()]
k>0 j=0

(3.2) r < min

Remark 3.3. The first bound on the right side of inequality (3.2) ensures that
(P#C)#A is well-posed. When (P#C)#A is well-posed, the second bound ensures
that (P#C)#A is stable.

3.2. Multiple-stage two-port NCS. The main result of this paper concerning
the robust stability of the NCS is stated as follows, which extends the result of Zhao
and Qiu [39] to the time-varying case.

THEOREM 3.4. Let P#C be stable and rp, rc, v; € (0,1]. Then the NCS in Fig. 8
is stable for all P' € B(P,rp), C' € B(C,r.) and A; € S with ||A|| < 14, @ =
1,2,...,1, if and only if

l
arcsinry, + arcsinr. + Z arcsinr; <
i=1
(3.3) 1
1

min ¢ arcsin ——————, arcsin ———————
sup || (P#C) k| inf [[(P#C)(5)]|
k>0 J20

Remark 3.5. In condition (3.3), the following inequality:

!
(3.4) arcsinry, 4+ arcsinr, + E arcsinr; < arcsin
i=1

1
sup |[(P#C) ||
k>0

guarantees that the NCS in Fig. 3 is well-posed, which will be discussed in following
subsections. If the well-posedness of the NCS is satisfied, then condition (3.3) can be
rewritten as

l
. . . . 1
(3.5) arcsinr, + arcsinr. + E arcsinr; < arcsin -

2 = IP#O G

m
iz

This manuscript is for review purposes only.
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12 T. YU, D. ZHAO, AND L. QIU

1

Naturally, we can view the value ——————

inf [(P#C) ()]

in Fig. 3 in the time-varying case. The larger the margin is, the more uncertainties
the NCS can tolerate.

as the stability margin of the NCS

Theorem 3.4 reduces to Theorem 3.2 when r, = 0,r. = 0 and r; = 0 for each
integer ¢ € [2,1]. As an important special case of Theorem 3.4, the following result
gives a necessary and sufficient condition for robust stability of LTV systems when
only the plant is subject to uncertainty. We state this as a corollary.

COROLLARY 3.6. Let P#C' be stable and r, € (0,1]. Then P'#C is stable for all
P’ € B(P,rp) if and only if

1 1
sup [[(P#C)xx " inf [[(P#C) ()]l
k>0 j=>0

rp < min

Proof. The proof follows directly from Theorem 3.4 by letting r. = 0 and
r,=0,1=1,2,...,1L O

The following result is an immediate consequence of Theorem 3.4 when the
transmission matrices of the two-port channels have no uncertainties, i.e., r; = 0,1 <
i <I.

COROLLARY 3.7. Let P#C be stable and ry,, 7. € (0,1]. Then P'#C" is stable for
all P € B(P,rp) and C' € B(C,r.) if and only if

1 . 1
arcsin -

sup || (P#C) kx|’ inf [|(P#C)(5)
k>0 Ji>

arcsinr, + arcsinr, < min { arcsin

Remark 3.8. We remark that some works, for instance [16] and [19], have given
similar robust stability conditions for LTV systems. In [16], Feintuch derived a
sufficient condition and a necessary condition for the robust stability under directed
time-varying gap perturbations of the plant, respectively. These two conditions are
different in the time-varying case. In our study, we obtain a necessary and sufficient
condition for the robust stability of LTV systems for the case when the plant is subject
to the standard gap metric uncertainty. In [19], necessary and sufficient conditions
have been obtained for the feedback robust stability based on the linear operator
theory, but the causality of systems is not considered. Nevertheless, our models for
systems and uncertainties incorporate the causality issue. In addition, the uniform
boundedness condition is in fact necessary in [19], but is not required in our main
results.

In the rest of this paper, we will give the proof of Theorem 3.4. The proof of
the sufficiency is a generalization of the idea introduced in [16] and [39] to the time-
varying case. The key point is the proof of the necessity, which makes use of the
one-vector interpolation problem for nest algebras [30].

3.3. Sufficiency of the robust stability condition. In this subsection, we
will prove the sufficiency part of Theorem 3.4. The proof is closely related to the
fact that arcsin§(Py, P2) is a metric for Py, P» € L, called the angular metric [33].
We first briefly review the minimal angle between subspaces in a Hilbert space H.

This manuscript is for review purposes only.
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Given two closed subspaces X and ) of H, the minimal angle between X and
Y is defined as 0pin(X,Y) = inf{f(z,y) : 0 # =z € X,0 # y € Y}, where
(=, )]

[l |y
P#C is stable, 0,,i,(Gp, Gt) = arcsin || P#C|| =1 (see [19]).

We are now ready to show the sufficiency part of the proof for Theorem 3.4.

O(x,y) := arccos is the angle between two nonzero vectors x,y € H. When

Proof. Assume that condition (3.3) holds. We first prove that P’ is stabilizable
for all P’ € B(P,rp). If there exists P’ € B(P,r,) such that P’ is not stabilizable,
then, by [16, Theorem 6.1.3], we have that the operator IIy.|xs is not invertible,
where X' := Gpr and Y := G[,. Then one of the following two possibilities occurs:

(i) 7 (IIy+ | x) is not bounded below; (ii) ITx/IIy.1 is not injective.

In case (i), for all e > 0, there exists a unit vector ' € X’ such that

!
IIIy.2’|| < e. Setting y := IIyz’ € Y, we obtain that 6(z’,y) = arccos |||<af||’|iy>|| =
Y
1—|ITI 712
arccos (W) < arcsine. Since 6(P', P) < rp, we can choose 7, € (0,7p)
Yy

such that §(P’, P) < 7,. This implies ||(I — IIg,)2'|| < 7p. Let & = Ilg,2’" € Gp.
Then 6(z',z) < arcsin?,. Since P is stabilizable, it follows from Theorem 2.5 that
P admits normalized right and left coprime factorizations P = NM~! = M~I'N.

Clearly, Gp = R([Aj\ﬂ) = K([-N M]). Then, we can write z = []\J\ﬂ u for

]\]\47 Eju. It is easily seen that z; € (Qp(j))J‘ and
[Ejull _ . _
= 0, where the last equality follows from that {E;}

some v € hy. Let z; =

lim #(zj,z) = lim arccos
converges to I in the strong operator topology. Thus, there exists j; > 0 such that
O(x;,x) < e for all j > j;. Similarly, we can find y; € (Q’C(j))L such that 0(y;,y) < e

for all j > jo. Consequently, for all j > max{j1, j2},

arcsin 7, + arcsine + 2 > 0(a’, z) + 0(a’, y) + 0(z;, ) + 0(y;,y) > 0(x;,y;)
> B ((Gr1))* Gy ) = anesin [P#C) | = axesin | (PHOY )~

where the last equality follows from the fact that (P#C)(j) = P(j)#C(j) for each j >
1

0. Since the above inequality holds for all € > 0, we get r, > 7) > ——————,
vt inf [(P#C) ()]

which leads to a contradiction to condition (3.3).

In case (ii) we proceed similarly. Since IIx/IIy. is not injective, there exists a
nonzero vector z € Y+ N (X)L, Define w = llgiz. Note that v (XN, 65) =

v(X',Gp) = 6(P',P) < 7, implies that 0(w,z) < arcsin?,. Noting w € Gp =
o N
N M)t = .
-yt == (|,
_N*
M*
for all j > js3. Also, there exists z; € (g’c(j))L such that 6(z;,2) < € for j > j4.

}), we obtain that w = []é\i ] v for some v € hy. We

set w; = [ ] Ejv. It is easy to verify that w; € G C (Gp(j))* and 6(wj, w) < €

This manuscript is for review purposes only.



479

480

183

483

484
485

486

187

488
489
490
491
492
193
494
495
496
497
498

499

500
501
502

14 T. YU, D. ZHAO, AND L. QIU

Therefore, for all j > max{j3, j1},

arcsin 7, + 2e > 0(w, z) + 0(w;, w) + 6(z;,2) > O(wj, 2j) > Omin ((gp(j))L7 (glc(j))l)
= arcsin || (P#C)(5)[ "

1
Hence, r, > 7, > which also violates condition (3.3).

= W PACIG)T
The stabilizability of C' € B(C,r.) can be shown similarly. By Theorem 2.5,
it follows that P’ and C’ have right coprime factorizations P’ = N’(M’)~! and

. !
C' = V'(U")7!, respectively. Denote []\]\/}fl} = (I+A) T+ Ay []\]\/‘/{,] and

] . Then the ith perturbed plant P} = N;M; !

!/

[(‘2] =(T4+0M) - (I+A)T [g/

is well-defined and so is the perturbed controller C/ = V;U; ', where P} = P’ and
C] = C'. To complete the proof, we need to prove that the perturbed closed-loop
system P/#C! is stable for i = 0,1,...,l. We first show the well-posedness of P/#C.
Since P#C' is stable, it follows that I — PC is invertible; that is, I,, — (PC)gy is
invertible for each k > 0. It follows from Proposition 2.8 that P}, € B(Pyk,7p)
and Ol/ck € B(Ckg,1c). Moreover, ||(A))gk|| < r;. Note that (P#C)px = Prx#Chi-
Then, by hypothesis (3.4) and [39, Theorem 2], we know that for all k& > 0,
(I = P{C))ki = In — (P)) ki (CY) g is invertible for each k > 0. Immediately, I — P/C!
is invertible. Therefore, P/#C/ is well-posed.

It remains to show that P/#£C; is stable. Clearly, the sequence {||P(j)#C (j)};=,
is non-increasing in j. Then JlI;%H(P#C)(])” = jlggOHP(j)#C(j)H This implies

. . ! . . . 1

that arcsinr, + arcsinr. + 1; arcsinr; < Jlgrolo arcsin PG)#C oIk It follows from
Definition 2.9 and Proposition 2.10 that P € Ny (P/_y,r;) C B(P/_y,r:), C| €

No (C(_H, ri+1) cB (C(_H, ’)"Z'+1) . By the triangular inequality of the angular metric

7 K2

[33, Proposition 1], we have for each j > 0,

arcsind (P/(5), P'(j)) < Zarcsin& (PL(j), Pr_1(j)) < Zarcsiné (P, Pi_y),

k=1 k=1
! !
arcsin d (C.(5),C"'(j)) < Z arcsind (Cy,(5), Cr_1(j)) < Z arcsind (Cy, Cy_y) -
k=i+1 k=i+1

Again from Proposition 2.8, we know that P'(j) € B(P(j),rp) and C'(j) €
B(C(j),r.). Applying the triangular inequality again gives

arcsin d (P} (j), P(j)) < arcsinr, + Zarcsiné (P, Pi_y),
k=1
!
arcsin d (C}(4),C(j)) < arcsinr. + Z arcsind (Cy, Ci_1) -
k=i+1

This manuscript is for review purposes only.
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This implies that

lim arcsind (P} (4), P(j)) < arcsinr, + Zarcsiné (P, Pi_1),

— 00
I k=1

!
lim arcsiné (C(j),C(j)) < arcsinr, + Z arcsind (Cy, Ci_y) -
Jmree k—it1

Thus, we have

lim (arcsiné (P} (5), P(j)) + arcsin§ (C.(5), C(5)))

J—0o0

i !

< arcsinr, + arcsinr, + Z arcsind (P, Py_) + Z arcsind (Cy, Cy_y)

k=1 k=it+1
!

< arcsinry, + arcsinr, + E arcsinr; <
i=1

. . 1
1m arcsin ———————-
j—roo IP(7)#C ()]

This means there exists jo > 0 such that

1
1P (o) #C (o)l

By [19, Theorem 4], we know that the closed-loop system P/ (jo)#C/(jo) is stable.
Now it is easy to see that NZ-MZ‘_1 and %Ui_l is a right coprime factorizations
of P/ and CJ, respectively. According to Theorem 2.5, C] has a left coprime
factorization C| = Uflf/i. Let W; := U;M; — V;N,. Then W; is invertible because
P!#C! is well-posed. It can be easily verified that Ni(jo)Mi_l(jo) is a right coprime
factorization of P(jo), and U; ' (jo)Vi(jo) is a left coprime factorization of C!(jo).
Since P!(jo)#CL(jo) is stable, it follows from Lemma 2.4 that W;(jo) is stably
EjoWiEj|g,n, 0 ] _ |:Wi 0 ]
Fy WiEj | n, Wildo)] ~ [Wie Wiz]’

arcsin é (P} (jo), P(jo)) + arcsin 6 (C(jo), C(jo)) < arcsin

invertible. We partition W; into W; = {
wit 0
Wig Wia Wit W'
U;M; — V;N; is stably invertible. Again, from Lemma 2.4, we obtain that P!#C!
is stable for ¢ = 0,1,...,l. Therefore, the NCS in Fig. 3 is stable. This finishes the
proof for the sufficiency part. ]

Consequently, W, 1 = [ is causal and bounded; that is,

7

3.4. Necessity of the robust stability condition. The necessity part of
Theorem 3.4 will be proved by using the contrapositive argument. First, assuming
that condition (3.4) fails, we will employ the idea in the proof of necessity part of [39,
Theorem 2] to show that there exists i € {0,1,...,1} such that P/#C/ is not well-
posed. Finally, given condition (3.5) violated, we will construct a series of uncertainty
quartets {A;}l_, C S, a perturbed plant P’ and a perturbed controller C’, which
destabilize the NCS. The stability of a feedback system is determined by the minimum
angle between the graphs of the plant and controller. In order to construct A;, we aim
to rotate a specific vector in the subspace Gp(;) for some j with cascaded operators
in the form of I + A;. Then the uncertainty quartets A; € S for 1 < i <[ will be
completely constructed through one-vector interpolation problem for nest algebras.
As a result, we first briefly review the direct rotations of subspaces in a Hilbert space
H. The background and notation follow from [8].

This manuscript is for review purposes only.
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Given two closed subspaces X and )Y of a Hilbert space H, It is shown
in [8] that if ||IIxy — IIy|| < 1, then there exists a unitary operator U such that
Ully = IIyU, namely, X can be transformed to ) by U. Define the following
isometries: X : K(X1)t = H and X, : K(X2)T — H with X; (K(X1)t) = &

and XQ (IC(XQ)L) == Xl. Then X]_Xik = Hx,XQXS = HXJ- and [Xl XQ]_l = §}k .
2
L XiUX, X:UX.) [X:] . o [Co —81] o
We can write U = [X; X5] XiUX, X;UXo| |xz| = X Se O X*, where
X = [X; X,]. Let ©® = arccos(CoC)? be the continuous functional calculus for
(CoCy)z [16, Chapter 2]. Then Oy, (X, Y) is the minimum singular value of © [8].
DEFINITION 3.9 ([8, Definition 3.1]). A unitary solution U = X go —051 X* of
0 1

Ully = IIyU is called a direct rotation from X to Y if it satisfies that Co > 0, C1 >0
and S, = 5.

As shown in [8], among all unitary transformations mapping X’ to ), the direct
rotation is the “most economic” in some sense.

PROPOSITION 3.10 ([8, Proposition 3.2]). A direct rotation exists if and only if
dimxX NY+ =dimx+n)y.
Now, assume that dim X N Y+ = dim X+ N Y. Following the derivation in [8], we
0 —-A .
{A* 0 ]) X*, where the
minimum singular value of A is 0, (X, Y). For A € [0, 1], let

Z=Xexp ({Ag* _SAD X*X.

0 —-XA
AA* 0

obtain the direct rotation from X to Y as U = X exp

Then a direct rotation from X to Z is X exp <[ }) X*, and it can be seen

in [34] that X exp <[(1 —())\)A* -a 6 AA
Consequently, we get 0p,in (X, Z) = Mmin(X,Y) and 0,,in (2, V) = (1=2N)0min (X, D).
This implies that

X* is a direct rotation from Z to ).

(36) emin(-)(a y) = emzn(Xa Z) + emzn(zvy)

Notably, in the proof of the necessity part of Theorem 3.4, we will make use of the
direct rotations of one-dimensional subspaces in Hilbert space.

The uncertainty quartets A; € S for 1 < 4 < [ will be completely constructed
through the following one-vector interpolation problem for nest algebras [30].

LEMMA 3.11. Let z,y € ho. There exists A € S such that Az = y if and only
if there exists a constant ¢ such that for each k > 0, |Exy|| < c||Exz|. If such an A
exists, it can be chosen so that ||A|| < c.

The stability of feedback systems can be characterized in terms of the minimal
angle between the graphs of the plant and controller [16, Chapter 9]. We state this
as a proposition.

PROPOSITION 3.12. The closed-loop system P#C' is stable if and only if

Gmin (gPa glc) > 0.
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Proof of the necessity of Theorem 3.4. We first assume that condition (3.4) does
not hold. Then there exists kg > 0 such that

l
arcsinry, + arcsinr. + E arcsinr; > arcsin
i=1

1
”Pkoko#ckoko ” '

Consider the nominal system Pk, #Crok,- From the proof of [39, Theorem 2], we
know that there exist matrices A, k., Ac g, and A; g, with [|Ap ko |l < 7p, Q¢ ko || < 7e
and [|Aj gl < ri,i = 1,2,...,1, such that P/, #Cjy, is not well-posed. Here

Py, = Nik Mljklo is a right coprime factorization of Pj, , where [MZI:O} =
s0
(TH+Ac ko) T +Ap k) - - (T4 A1 ko ) (L +Dp ko) []\]\{:O:O} , and NM~1 is a right coprime
oko

factorization of P. Let VU ™! be a right coprime factorization of C. It is easy to check
that Vi, U,;O}CO is a right coprime factorization of Cj,x,. We know from Lemma 2.4
that [Ml,ko Vioko
Niko  Ukokeo
Decompose hy as Ey,—1ha @ (Egy — Exg—1)h2 © Fiyha, and define the following
operators on hy via

] is not invertible.

0 0 0
Ap = Ap,ko s Ac = Ac7k0 and Ai = Ai,ko
0 0 0
for i = 1,2,...,1. Apparently, A,,Ac,A; € S with ||A,|| < 7rp, [|A¢|| < re and
MY M v v
1Al < 7. We set {N’} =T+ A4, {N] and U’} = (I + A) Ul Then
P'=N'M")"' e Mi(P,rp) C B(P,1,), and C" = V'(U")~' € No(C,r.) C B(C,r.).

!

Define []\]\{ﬂ = T+ AT+ A—y) - (T + Ay) []\J\{’} . Then P} := N, M; ' is a

right coprime factorization of P/. It is easy to verify that (N;)kk, (M) kek,) ' and

Vi ko (Upok, )~ are right coprime factorizations of (P))kk, and Cy ., respectively.

(M) koo Vk/oko}
(Nkoko  Uggro

] . Hence, the matrix in the left side of the above equality

Furthermore, by the definitions of A,, A, and A;, we see that {

1 [ Mike Vigko
(I+Ack) |:Nl o Ukoe
is not invertible, which shows that (I — P/C")k.k, = In — (P/C")kok, i DOt invertible.
This violates the well-posedness of P/#C". Therefore, we have shown the necessity of
the condition in (3.4).

In the rest, it suffices to show the necessity of the condition in (3.5). The proof
proceeds by using the contrapositive argument. Suppose that condition (3.5) does

a
not hold. Clearly, we have for all j > 0, arcsin < > arcsinr;, where

IPG#COI iz

qg=101+2, 714 =r1pand rigg == r.. Fori = 1,...,q, we can always choose
1 q

—————— = > arcsin?; ;. By Proposition 2.10,

1P()#C )] i=1 "

we have Ni(P,r,) C B(P,r,) and No(C,r.) C B(C,r.). Thus, we only need to

construct {A;}{_, C S satisfying ||A;|| < 7; such that P;#C is unstable, where

Gy = ( 1+ Aq+1_k)) Gp.

k=1

0 < 7;; < 7; such that arcsin

This manuscript is for review purposes only.
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Note that Gp(;) and Qé(j) are two closed subspaces of F;jhy, and for j > 0, it holds

1 q
that 0,,,in (gp(j),g'c(j)) = arcsin = Y arcsinf; ;. Now, we can choose

IP#COHI =
q

uj € Gp(y) and w; € Q/C(j) satisfying 6(u;,w;) = Z:larcsinfi,j. Let Uy ; = span{u;}
=

and Wy ; = span{w;} be the one-dimensional sabspaces spanned by wu; and wj,
respectively. Note that dim i ; ﬂWd:j = dim Z/{d:jﬂWO,j. By Proposition 3.10, a direct

rotation from Uy ; to Wy ; is given by X exp ({ 0 -4

A% 0 }) X*, where the minimum

g

singular value of A is O, (Up j, Wo,;) = D arcsin?; ;. Denote the direct rotation
i=1

operator as

H(N) := X exp ([Ag* _SAD X*, xelo,1].

i arcsin r,

Set Ay = "ZL———— and A, = 1. Denote Us; = o(\)Uo,. It is
> arcsin; ;

easy to see ktTllat Omin Ui j,Uo;) = Nibmin Uo;,Wo,;) for each i = 1,...,q,

which shows O,,in Uy,j,Uo ;) = 221 arcsin?; j. By (3.6), we get Opmin Uo,j, Wo,j) =

Omin Uo,j,Uq.;) + Omin Uy, 5, Wo,;) - Hence 8,5 Uy, Wo,;) = 0. Furthermore, we

observe that
« 0 Aic1 — M)A .
Ui j = d(Ni)o(Nim1) Ui—1; = X exp (|:(>\7, ~ 1) A (it 0 ) ]) XU 15,

yielding that i, (U; ;,Ui—1,;) = arcsinr; ; for i =1,...,q.
Let Q;; : L{ZJ-] — U,;_1; be the parallel projection onto U;_1 ; along U; ; [19],

Then [|Q; ;| =

1
. Tt is straightforward to check that there exists v; ; € U with
1,7
||’Ul‘,j|| = 1, such that ||Q7;’j’l)i’j

11 .
| = =— > — and Qi;vi; = vij + Qit1,;Vi41,; for i =
Tij  Ti

. . 1
1,...,q, where Qq41,Vg+1,; = Ajw; for some \; € C. Since Jlg{r}lo | Ejr1Qi i ] > o
1

1
it follows that there exists j; satisfying ||Ej, 41Qi j,vij | > — forall 1 < i < g.
r

K2

o 1Bvi i

Therefore, for all 7 > j; + 1, we have I < < 1.
7 . ’ 1EjQijivig I~ [1Ej+1Qi 5 vi |l '

Let ¢; = sup M Then ¢; < 1. We write v; 5, = (Vj,41,0j,42,---)

izt 1B Qi vig |
and Q; Vi, = (Wji+1,Yj42:---)- Set v; = (0,0,...,0,05,41,Vj,42,...), Qiv; =
(0,0,...,0,9j,41,Yj142,---) € ha. Note that Eju; = 0 for j = 1,...,j1.
Then for all 7 > 0, ||[Eju|l < ¢l EjQivil. In view of Lemma 3.11, there
exists A; € S and ||A;]] < ¢ < 7 satisfying that A;(Qv;)) = v;. Clearly,
Zi(jl)(@i,jlvi,jl) = Vi j;- Let A; = 7Zi. Then A; € S with HA1|| < r; such that

q
(H (I+Aq+1_k)(]1)) (Q17j1U17j1) = )\jlel for some >\j1 S C. Since Qle’Ule S
k=1
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q
uo_’jl and )\jlel S WO,j1~ Then we have Gmm ( H (I + Aqulk)(jl)Z/{O,jlaWo’jl) =0.
k=1

This shows 6,,in, ( [T+ Agr1-%)(J1)GP31), QC(J1)> = 0 because Uy, j, C Gp(j,) and
k=1

M; ! M .
Wo,ji C Q’C(jl). We set {Nz] = (kl:[1(1+Ai+l_k)) [N} fori=1,...,q. In case

M, is invertible, in light of Proposition 3.12, Pé#C’ is unstable, hence, the NCS is
unstable. This completes the necessity part of the proof for condition (3.5). If not, we
assume that M;_; isAinvertible, but M; is not iAnvertible for some i. We will construct
Ai €S satisfying HAZ” <7 such that (I + Ai)(jl)(Qi,jlvi,jl) = Qi+17jlvi+1’jl and
M/ Aoy | Mg
AP : 2 - X T
M! is invertible, where [NJ =T+ A)) [Nil .
. JAVEWAY u
Write A; = {Az; Aﬂ and Qi,j,vij, = ||, where u = (uj,+1,Uj 42, Uj; 43 - - )

and e = (€j,+1,€j,+2,€j,+3, - ..). Note that H [ﬂ
not 0. Without loss of generality, assume u # 0. We consider the following two cases:

— 0 : A _ |Aa 0
(1) e = 0: In this case, let A; = [Aig Ay
Ai e S with ||Az|| < r; such that (I + Ai)(jl)(@i,jlvi,jl) = Qi+1,j17}i+1,j1 and
Mz, = M;_1 + A;1 M;_4 is invertible.
(2) e # 0: In this case, since u # 0, we may assume that w;, 1 = 0,u;,42 # 0
and ej, 41 # 0. Define

’ # 0. Thus at least one of u or e is

} It is easy to check that

ol -
0 51]71
0 _52Wint3 @Ujito ool
n
Vi = c u”ujlng
3144 j1+2
T
j1+2
i 0
E1Uj,+2 @ €5, 41 0
a2 SOl
Vo= e ,
0 0

where V7 and V5 are conformal to A;i(j1) and A;o(j1), respectively, 0 < g <

0 for each & > 0, and I, is the identity matrix. If all the eigenvalues

of (M; (]1)( i—1(J1))~ ) are zero, take 0 = 1. If some eigenvalue of

(M; (j1)(Mi—1(41))~ ") 15 nonzero, let 0 = min{[A| : A is an eigenvalue of
: _ A Ay

(M;(j1)(Mi—1(j1)) 1), and A # 0}. Then Viu+ Vae = 0. Let A; = |:Ai3 Ai4:|’
A 0 0 A 0 0 o

where A;; = [0 Ail(jl)-i-VJ and A,y = {O Aig(]d)—l-Vz]' Then it is

straightforward to check that A; € S and (I + Ai)(jl)(Qi,jlvi,jl) = Qit1,j1Vit1,5; -
Moreover, we can choose e > 0 sufficiently small so that ||A;] < 7; and
M!(j1) = M;(j1) + ViM;—1(j1) + VaN;—1(j1) is invertible. We partition M/ into
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M = Ej1 ]V[{Ejl |Ej1 ho 0 ‘
! Fle’L{Ejl|E_]1h2 le(]l)
invertible. Hence, M/ is invertible. d

. Note that Ej1 ]\4{E‘j1 ‘Ej1h2 = Elei*1E71 |Ej1h2 is

Remark 3.13. In the proof of the necessity of Theorem 3.4, it is required that the
destabilizing perturbations of the two-port networks are causal operators. The key
step to achieve this target is via solving the one-vector interpolation problem for nest
algebras.

4. Conclusions. In this paper, we consider the robust stability problem for a
time-varying two-port NCS. The uncertainties in the plant and controller are measured
by the gap metric. The uncertainty involved in the two-port network is represented
by the transmission matrix I + A, where A € S is bounded by the operator norm.
We obtain a necessary and sufficient condition in the form of an “arcsine” inequality,
for robust stability of the NCS, which generalizes a similar result for linear time-
invariant NCSs. The sufficiency is mainly derived from the triangular inequality of
the angular metric. The key step in the proof of the necessity relies on the one-
vector interpolation problem for nest algebras. Furthermore, as one of the important
contributions of this paper, a necessary and sufficient condition for robust stability
of LTV systems has been provided for the case when gap-metric perturbations to
the plant alone are considered. Notably, our models for systems and uncertainties
incorporate the causality issue, which is often neglected in the previous works. The
optimal robust controller design problem can be directly motivated by our stability
condition, and it will be taken as a future research direction based on the time-varying
controller design technique in [18].
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