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Abstract. In this paper, we study the robust stability of a networked control system5
(NCS) under the framework of infinite-dimensional discrete-time linear time-varying (LTV) systems.6
The NCS consists of a pair of uncertain plant and controller, as well as an uncertain bilateral7
communication channel in between. The uncertainties in the plant and controller are measured by8
the gap metric. The communication channel between the plant and controller is described by a9
cascade of two-port networks whose transmission matrices are subject to norm bounded additive10
uncertainties. Such an uncertain two-port network can model distortions and interferences occurring11
during control and measurement signal transmissions. The causality of the LTV subsystems is12
characterized by using nest algebras. A necessary and sufficient condition for the robust stability13
of the NCS, with the causality of all system components explicitly considered, is established in the14
form of an arcsine inequality, which generalizes a similar result for linear time-invariant NCSs.15
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1. Introduction. Robust stability of feedback systems has attracted a19

considerable amount of attention over the past few decades. In networked control20

systems (NCSs), due to the presence of distortions and interferences in the signal21

transmission, the uncertainties exist not only in modeling the plants and controllers22

but also in the communication channels in between. Hence the study of robust23

stability of such NCSs poses new challenges. In this paper, we study robust stability of24

NCSs under the framework of discrete-time linear time-varying (LTV) systems. The25

uncertainties in the plant and controller are measured by the gap metric. The bilateral26

communication channel between the plant and controller is described as a cascade of27

two-port networks whose transmission matrices are subject to norm bounded additive28

uncertainties. The causality of the LTV subsystems is characterized by using nest29

algebras.30

The gap metric was initially introduced to control literature for the study of31

robust control of linear time-invariant (LTI) systems by Zames and El-Sakkary [41].32

It was shown a few years later by Georgiou [21] that the gap metric is computable33

exactly in terms of standard “two-block” H∞ optimization problems. Based on34

this computation result, a rather comprehensive analysis and synthesis theory was35

developed by Georgiou and Smith in [22]. The LTI gap metric and its variants, as36

well as the associate robust control theory, have also been extensively studied in the37

last three decades [21, 22, 25, 32, 33, 35, 36, 37]. In terms of simultaneous uncertainties38

measured by the gap [33], pointwise gap [32] and ν-gap [36], the tight robust stability39

conditions have been obtained, respectively.40
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2 T. YU, D. ZHAO, AND L. QIU

The extension of LTI robust control theory to LTV systems is also underway.41

With the development of H∞ control theory, significant insights have been obtained42

by considering its time-varying analogue, a control theory in the framework of the43

nest algebra of causal bounded operators on an appropriate complex Hilbert space of44

input-output signals [16]. Such a theory for LTV systems generalizes the H∞ control45

theory in the sense that the systems are considered as linear operators on the Hilbert46

signal spaces. In the context of LTV robust control theory, the gap metric has also47

played an important role [10, 11, 14, 16]. Feintuch [13] generalized the two-block H∞48

optimization method for the computation of the gap in [21] to the LTV case. This49

was achieved by introducing the time-varying gap metric [13, 16], which is different50

from the standard gap metric for LTV systems. A sufficient condition and a necessary51

condition have been obtained in [16] for robust stability of LTV systems under plant52

uncertainty measured by the directed time-varying gap, respectively. These two53

conditions are different in the time-varying case. A more general geometric framework54

for robust stabilization of feedback systems using operator-theoretic methods has55

been developed in [5, 19]. Specifically, a necessary and sufficient condition for robust56

stability under simultaneous gap-metric uncertainties of the plant and the controller57

was presented in [19], which is a generalization of the arcsine condition of [33] to the58

time-varying case, but the causality of systems is not considered.59

In the continuous-time context, a time-varying generalization of Vinnicombe’s60

ν-gap was presented in [3, 4, 29] for causal linear systems. Accordingly, a time-61

invariant ν-gap robust stability result extends with respect to a definition of closed-62

loop stability. It is shown that the generalized ν-gap metric and an adaptation63

of Feintuch’s time-varying gap metric give rise to the same topology and thus64

qualitatively equivalent robust stability results [3], in which the development also65

corrects various aspects of the results in [4] and [29].66

Networked control systems (NCSs) are feedback control loops closed via a real-67

time shared media network [38]. The difference between the NCS and the standard68

feedback system lies in the presence of a communication network, which is deployed to69

exchange information, between the plant and controller. In networked environments,70

the bidirectional control signals are transmitted through imperfect communication71

channels for most practical systems. Due to the presence of channel distortions and72

interferences, it is necessary to consider the channel uncertainties when investigating73

the feedback stability. In this paper, a two-port NCS model is developed under74

the framework of discrete-time LTV systems. by extending the standard closed-loop75

system (Fig. 1) to the feedback system with cascaded two-port connections (Fig. 3).76

Such an NCS model is motivated by the application scenario of stabilizing a feedback77

system, where the plant and controller cannot communicate directly and the signals78

can only pass through the communication network consisting of a sequence of relays,79

such as, satellite networks [1], wireless sensor networks [2] and so on. Furthermore,80

each communication channel between two neighbouring relays can be viewed as a81

subsystem that involves not only multiplicative distortions on the transmitted signal82

itself, but also additive interferences induced by the signal in the opposite direction.83

Such a phenomenon is usually encountered in a bidirectional wireless network subject84

to communication error caused by channel loss, fading or some malicious attacks.85

Two-port networks first appeared in electrical circuit theory [6, 7], and were86

later borrowed to represent LTI systems in chain-scattering formalism [28]. Recently,87

a two-port approach was taken in [20] to model the communication channel in a88

networked feedback system. More specifically, the robust stability of the networked89

feedback system was investigated under the framework of H∞ control. Later in [39],90
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a concise necessary and sufficient robust stability condition was obtained for the91

continuous-time LTI networked control systems with the uncertain communication92

channels described by cascaded two-port networks. Furthermore, in this study, the93

robust stability of cascaded two-port NCSs is investigated in the framework of discrete-94

time causal LTV systems. In particular, we model a discrete-time LTV system as a95

(possibly unbounded) linear operator described by a block lower-triangular infinite-96

dimensional complex matrix due to the causality of the system. The system is said97

to be stable if the operator is bounded in norm. Particularly, the uncertainty in a98

two-port channel is described by a stable LTV system additive to the transmission99

matrix of the two-port network. Regarding norm bounded uncertainties in the100

communication channels as well as standard gap bounded uncertainties in the plant101

and controller, we present a necessary and sufficient condition for robust stability of102

the cascaded two-port NCS in the form of an arcsine inequality, which generalizes of103

the main results in [39] to the LTV case.104

The rest of the paper is organized as follows. In Section 2, we introduce the105

main definitions, terminology, some auxiliary propositions, and the NCS model to be106

studied in this paper. In Section 3, we first examine the robust stability of a special107

case with only one uncertain two-port network in the communication channel via the108

small gain theorem, then present the robust stability result for a general LTV NCS109

with simultaneous uncertainties. Last in Section 4, we conclude with a summary of110

the contributions of this paper.111

2. Preliminaries. In this section, general definitions and the mathematical112

background used throughout the paper are introduced. Denote by C the set of113

complex numbers, and by Cn the space of n dimensional complex vectors. Let114

X ,Y be Hilbert spaces and consider a linear operator A : D(A) ⊂ X → Y, where115

D(A) = {x ∈ X : Ax ∈ Y} is the domain of A. The range and kernel of A are defined116

to be R(A) := {Ax : x ∈ D(A)} and K(A) := {x ∈ D(A) : Ax = 0}, respectively.117

The operator A is said to be bounded if there exists a positive constant c such that118

‖Ax‖ ≤ c‖x‖ for all x ∈ D(A). Let B(X ,Y) denote the Banach space of all bounded119

linear operators A : X → Y endowed with the operator norm120

‖A‖ := sup
x∈X ,‖x‖=1

‖Ax‖,121

122

and let τ(A) := inf
x∈X ,‖x‖=1

‖Ax‖ and B(X ) := B(X ,X ). For A ∈ B(X ,Y), denote by123

A∗ ∈ B(Y,X ) the Hilbert adjoint of A. An operator A ∈ B(X ,Y) is called an isometry124

if A∗A = I. Furthermore, A ∈ B(X ,Y) is called a unitary operator if A∗A = AA∗ = I.125

Finally, for a subspaceM of X ,M⊥ is the orthogonal complement ofM, and ΠM is126

the orthogonal projection onto M. The restriction of A to M⊂ X is A|M, which is127

from M to Y. For z ∈ X , y ∈ Y, we denote by y ⊗ z a rank-one operator defined by128

(y ⊗ z)x := 〈x, z〉y, ∀x ∈ X , where 〈·, ·〉 denotes the inner product on X .129

2.1. LTV systems. In this paper, we model a linear system as a (possibly130

unbounded) linear operator mapping between signal spaces. A typical choice for the131

input and output spaces is the complex separable Hilbert space132

hn2 =

{
(x0, x1, . . . , xk, xk+1, . . .) : xi ∈ Cn,

∞∑
i=0

‖xi‖2Cn <∞

}
,133

134
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4 T. YU, D. ZHAO, AND L. QIU

with the inner product and norm in the following form:135

〈x, y〉 =

∞∑
i=0

〈xi, yi〉Cn , ‖x‖ =

( ∞∑
i=0

‖xi‖2Cn

) 1
2

.136

137

Here ‖ · ‖Cn and 〈·, ·〉Cn denote the standard Euclidean norm and inner product on138

Cn, respectively. Denote by hn :=
{

(x0, x1, . . . , xk, xk+1, . . .) : xi ∈ Cn
}

the set of all139

time sequences, which is the extended space of hn2 .140

For each integer k ≥ 0, Ek denotes the standard truncation projection from hn2141

or hn onto the subspace Nk =
{

(x0, x1, . . . , xk, 0, . . .) : xi ∈ Cn
}

; that is,142

(Ekx)i :=

{
xi, i ≤ k;

0, otherwise.
143

Define ‖x‖k := ‖Ekx‖ for each k ≥ 0 for x ∈ hn. Then {‖ · ‖k : k ≥ 0} is a144

separating family of semi-norms on hn and defines on hn a metrizable topology,145

called the resolution topology on hn [16, Chapter 5]. The extended space hn is the146

completion of hn2 with respect to this topology. The set {Ek : 0 ≤ k <∞} is used to147

introduce the physical definition of causality for linear systems.148

Definition 2.1 ([16, Chapter 5]). Let P : hn → hm be a linear operator.149

(i) P is causal if, for each k ≥ 0, EkP = EkPEk.150

(ii) P is a linear time-varying (LTV) system if P is a causal linear operator that151

is continuous with respect to the resolution topology.152

We denote by Ln,m the set of all LTV systems from hn to hm. For P ∈ Ln,m, it153

follows from [16, Theorem 5.2.6] that P can be described as a block lower-triangular154

complex infinite matrix (not necessarily a bounded operator). As a result, y = Px155

can be expressed by156 
y0
y1
y2
...

 =


P00

P10 P11

P20 P21 P22

...
...

...
. . .



x0
x1
x2
...

 ,157

158

where Pij is a m × n matrix. It was shown in [15] that P is a closed operator, i.e.,159

GP :=

{[
x
Px

]
: x ∈ D(P )

}
is a closed subspace of hn+m

2 := hn2 ⊕ hm2 . This subspace160

is called the graph of P .161

A system P ∈ Ln,m is stable if its restriction to hn2 is a bounded operator. Since162

P ∈ Ln,m is a closed operator, it follows from the closed graph theorem [26] that P163

is stable if and only if Phn2 ⊂ hm2 . In the case when n = m, the set of all stable LTV164

systems on hn2 , denoted by Sn,n, is a weakly closed algebra containing the identity,165

where n is any positive integer. Indeed, Sn,n is a nest algebra [9] determined by166

the complete nest {Fkh
n
2 : −1 ≤ k ≤ ∞} on hn2 , where Fk := I − Ek, F∞ := 0 and167

F−1 := I. In the sequel, the spatial dimensions n and m are often dropped for168

notational convenience. Throughout this paper, for P ∈ L or S, let Pkk be the kth169

main-diagonal block of P and170

P (k) := P |FkX =

 Pkk

Pk+1 k Pk+1 k+1

...
...

. . .

 ,171

172
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Fig. 1. Standard closed-loop system.

where X = h or h2.173

The invertibility property of elements in L and S has been shown to be critical174

for the study of feedback systems. Invertibility in L is a purely algebraic property:175

P is invertible in L if and only if it has no singular elements on its main diagonal.176

In other words, P is invertible in L if and only if Pkk is invertible for each k ≥ 0.177

While invertibility in S is a topological property: P is invertible in S if and only if178

P is invertible in L, and ‖(EkPEk|Ekh2
)−1‖ is uniformly bounded on Ekh2. We will179

say that P is invertible if P is invertible in L. The system P is stably invertible if P180

is invertible in S; that is, P has a bounded causal inverse.181

2.2. Feedback systems. The closed-loop system in Fig. 1 is denoted as P#C,182

where P ∈ L represents the plant and C ∈ L the controller. The closed-loop system183

P#C is said to be well-posed if the internal signal e =

[
e1
e2

]
can be expressed as a184

causal function of any external input u =

[
u1
u2

]
. This is equivalent to requiring that185 [

I C
P I

]
is invertible, and its inverse is given by the four-block operator186

H(P,C) =

[
(I − CP )−1 −C(I − PC)−1

−P (I − CP )−1 (I − PC)−1

]
.187

188

In order for H(P,C) to exist, I−PC and I−CP have to be invertible. Hence, P#C189

is well-posed if and only if I − PC is invertible. Clearly, a sufficient condition for190

the well-posedness is that P or C has all zeros on its main diagonal, i.e., it is strictly191

causal.192

Definition 2.2. The closed-loop system P#C is stable if193 [
I C
P I

]
: D(P )⊕D(C)→ h2194

195

has a bounded causal inverse defined on h2; that is, H(P,C) ∈ S. A system P is said196

to be stabilizable if there exists a controller C such that P#C is stable.197

The stability of feedback systems is closely related to the existence of coprime198

factorizations. We introduce the right and left coprime factorizations for LTV systems199

in the following.200

Definition 2.3 ([15]). Let P ∈ L.201

(i) P = NM−1 is a right coprime factorization of P if M and N are causal,202

bounded operators, and

[
M
N

]
has a causal, bounded left inverse.203

The right coprime factorization is normalized if M∗M +N∗N = I.204
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Fig. 2. A single two-port network

(ii) P = M̃−1Ñ is a left coprime factorization of P if M̃ and Ñ are causal,205

bounded operators, and [−Ñ M̃ ] has a causal, bounded right inverse.206

The left coprime factorization is normalized if M̃M̃∗ + ÑÑ∗ = I.207

The following result can be found in [16].208

Lemma 2.4. Let NM−1 be a right coprime factorization of P ∈ L, V U−1 and209

Ũ−1Ṽ be right and left coprime factorizations of C ∈ L, respectively. The following210

statements are equivalent:211

(i) P#C is stable.212

(ii) ŨM + Ṽ N is stably invertible.213

(iii)

[
M V
N U

]
is stably invertible.214

In the discrete-time time-varying case, a system is stabilizable if and only if it has215

right and left coprime factorizations [12]. Moreover, these factorizations can always be216

normalized [16]. The equivalence between the existences of a right and a left coprime217

factorization was obtained in [31]. These results can be summarized in the following218

theorem.219

Theorem 2.5. Let P ∈ L. The following statements are equivalent:220

(i) P is stabilizable.221

(ii) P has a (normalized) right coprime factorization.222

(iii) P has a (normalized) left coprime factorization.223

2.3. Two-port networks as communication channels. The use of two-port224

networks in electrical circuits theory [6], [7] as a model of communication channels is225

adopted from [20] and [39]. In this subsection, we present the time-varying analogue226

of networked control systems (NCSs) involving cascaded two-port connections. The227

network T in Fig. 2 has two ports, where v and w compose one port and u, y228

compose the other. In general, the downlink transmission from v to u and the uplink229

transmission from y to w share the two-port network T . In this study, we will focus230

on the transmission representation of T . Define the transmission matrix T , and the231

descriptions of the communication channel as232

T =

[
T11 T12
T21 T22

]
and

[
v
w

]
= T

[
u
y

]
.233

234

Here, the symbol T denotes both the two-port network and its transmission235

representation for notational simplicity. In the case that the communication is ideal,236

i.e., the channel has no distortions or interferences, the transmission matrix is T =237 [
I 0
0 I

]
. When the bidirectional channel admits both distortions and interferences,238

we model the transmission matrix in the following form:239

T = I + ∆ =

[
I + ∆÷ ∆−

∆+ I + ∆×

]
,240

241
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Fig. 3. An NCS with two-port connections

where ∆ =

[
∆÷ ∆−
∆+ ∆×

]
∈ S with ‖∆‖ < r, r ∈ (0, 1]. The diagonal terms ∆÷,∆×242

are used to model the transmission distortion. The off-diagonal terms ∆−,∆+ are243

used to model the channel interference. The four-block operator matrix ∆ is called244

the uncertainty quartet. A more detailed analysis of the network uncertainty ∆ can245

be found in [20] and [39].246

In the following, we introduce the two-port network into the standard feedback247

system P#C, where P,C ∈ L. Assume that P and C admit the right coprime248

factorzations P = NM−1 and C = V U−1, respectively. In Fig. 3, the plant P and249

controller C communicate with each other through a two-port network. Considering250

the input and output of P, we obtain that

[
u
y

]
=

[
I
P

]
u =

[
M
N

]
M−1u, for any u ∈ h2251

such that M−1u ∈ h2. Or,

[
u
y

]
=

[
M
N

]
x for any x ∈ h2.252

Consider the transmission representation of the two-port networks {Ti}li=1. If the253

i-th stage of the network admits an uncertainty ∆i ∈ S, then the transmission matrix254

is given by Ti = I + ∆i. For each integer i ∈ (0, l), we can associate the first i stages255

of the cascaded two-port networks with the plant P , and the remaining l − i stages256

with the controller C. It follows from similar derivations as in [39] that signals satisfy257

the following relations:258 [
ui
yi

]
= TiTi−1 · · ·T1

[
u
y

]
= (I + ∆i)(I + ∆i−1) · · · (I + ∆1)

[
u
y

]
,259 [

vi
wi

]
= T−1i+1T

−1
i+2 · · ·T

−1
l

[
v
w

]
= (I + ∆i+1)−1(I + ∆i+2)−1 · · · (I + ∆l)

−1
[
v
w

]
.260

261

Regarding these relations, we view P together with {Tj}ij=1 as a perturbed plant P ′i262

with uncertainties {∆j}ij=1. Then P ′i = NiM
−1
i can be determined by its graph:263

(2.1) GP ′
i

=

[
Mi

Ni

]
h2 = (I + ∆i)(I + ∆i−1) · · · (I + ∆1)GP .264

Similarly, we view C together with {Tj}lj=i+1 as a perturbed controller C ′i with265

uncertainties {∆j}lj=i+1. Then C ′i = ViU
−1
i can be determined by its inverse graph:266

(2.2) G′C′
i

=

[
Vi
Ui

]
h2 = (I + ∆i+1)−1(I + ∆i+2)−1 · · · (I + ∆l)

−1G′C ,267

where the inverse graph G′C of C = V U−1 is defined as G′C =

[
V
U

]
h2.268

For convenience, we regard i = 0 as the situation where all the two-port networks269

are grouped with C, and i = l as the situation where all the two-port networks are270

grouped with P , i.e., P ′0 = P and C ′l = C. In addition, since ∆i ∈ S and ‖∆i‖ < 1, it271
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follows that I + ∆i is stably invertible. Then (Mi, Ni) and (Vi, Ui) are right coprime,272

respectively. In order to keep the perturbed plants P ′i and controllers C ′i well-defined,273

we add a mild condition on ∆i, so that Mi and Ui are invertible. In the following, we274

extend the definition on the stability of the two-port NCS in [39] to the time-varying275

case.276

Definition 2.6. The NCS in Fig. 3 is said to be stable if the perturbed closed-loop277

system P ′i#C
′
i is stable for i = 0, 1, . . . , l.278

2.4. The gap metric for LTV systems. We briefly introduce, in this279

subsection, some key concepts and main properties of the gap metric for LTV systems.280

Let X and Y be two closed subspaces of a Hilbert space H, and let ΠX and ΠY be281

the orthogonal projections on X and Y, respectively. The gap (or aperture) between282

the two subspaces is the metric defined as283

γ(X ,Y) := ‖ΠX −ΠY‖284285

(see [26] and [27]). It is shown in [27, p. 205] and [16] that γ (X ,Y) = max{~γ(X ,Y),286

~γ(Y,X )}, where ~γ(X ,Y) := ‖(I − ΠY)ΠX ‖ is the directed gap. This equation287

can be written in the equivalent form: ~γ(X ,Y) = sup
x∈X ,‖x‖=1

dist (x,Y) , where288

dist(x,Y) := inf
y∈Y
‖x− y‖ = ‖(I −ΠY)x‖.289

Proposition 2.7 ([16] and [27]). Let X and Y be two closed subspaces of a290

Hilbert space H. Then ΠY maps X one-to-one onto Y if and only if γ(X ,Y) < 1.291

Moreover, if γ(X ,Y) < 1, then γ(X ,Y) = ~γ(X ,Y) = ~γ(Y,X ).292

The gap between LTV systems P1 and P2 ∈ L is defined to be the gap between293

their respective graphs as follows:294

δ(P1, P2) := γ (GP1
,GP2

) .295296

The gap ball centered at P ∈ L with radius r ∈ (0, 1] is then given by297

B(P, r) := {P ′ ∈ L : δ(P ′, P ) < r} .298299

The next result shows that the gap between two stabilizable systems is not less300

than the gap between their respective restrictions to the truncation subspaces.301

Proposition 2.8. Assume that P1, P2 ∈ L are stabilizable. Then for k ≥ 0,302

δ ((P1)kk, (P2)kk) ≤ δ(P1, P2), δ(P1(k), P2(k)) ≤ δ(P1, P2)303304

Proof. We prove the first inequality below. The proof of the second can be shown305

similarly. Let δ(P1, P2) = r. Then r ∈ [0, 1]. Clearly, the case r = 0 or 1 is306

trivial. Thus 0 < r < 1 is assumed. Let P1 = N1M
−1
1 be a normalized right307

coprime factorization. Then it follows from [16, Corollary 10.1.4 and Theorem 10.4.1]308

that there exist causal, bounded operators ∆1,∆2 with

∥∥∥∥[∆1

∆2

]∥∥∥∥ ≤ r such that (N1 +309

∆2)(M1+∆1)−1 is a right coprime factorization of P2. For each k ≥ 0, it is easy to see310

that (P1)kk = (N1)kk(M1)−1kk and (P2)kk =
(
(N1)kk + (∆2)kk

) (
(M1)kk + (∆1)kk

)−1
311

are right coprime factorizations of (P1)kk and (P2)kk, respectively. Moreover,312 ∥∥∥∥[(∆1)kk
(∆2)kk

]∥∥∥∥ ≤ r. Therefore, we obtain δ ((P1)kk, (P2)kk) ≤ r = δ(P1, P2).313
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Based on the uncertainty quartets in equations (2.1) and (2.2), two special314

uncertainty neighborhoods are as follows.315

Definition 2.9. Assume that P ∈ L and P = NM−1 is a right coprime316

factorization. For r ∈ (0, 1], define317

N1(P, r) :=

{
P ′ = N ′(M ′)−1 :

[
M ′

N ′

]
= (I + ∆)

[
M
N

]
,318

∆ ∈ S, ‖∆‖ < r, M ′is invertible

}
;319

N2(P, r) :=

{
P ′ = N ′(M ′)−1 :

[
M ′

N ′

]
= (I + ∆)−1

[
M
N

]
,320

∆ ∈ S, ‖∆‖ < r, M ′is invertible

}
.321

322
323

In the time-invariant case, the above neighborhoods of a linear time-invariant324

system G are introduced in [23] and [24]. From [24], we know for r ∈ (0, 1],325

(2.3) N1(G, r) ∪N2(G, r) ⊂ B(G, r).326

In what follows, we extend relation (2.3) to the time-varying case.327

Proposition 2.10. Let P ∈ L and r ∈ (0, 1]. Then328

N1(P, r) ∪N2(P, r) ⊂ B(P, r).329330

Proof. If P ′ ∈ N1(P, r), then GP ′ = (I+∆)GP . From the definition of the directed331

gap, it follows that332

~γ(GP ,GP ′) = sup
06=x∈GP

inf
06=y∈GP ′

‖y − x‖
‖x‖

= sup
0 6=x∈GP

inf
0 6=x1∈GP

‖(I + ∆)x1 − x‖
‖x‖

< r.333

334

Since NM−1 is a right coprime factorization of P , then, by [16, Theorem 6.3.8], there335

exists stably invertible Q ∈ S such that

[
MQ
NQ

]
is an isometry. Thus, the orthogonal336

projection on GP is given by ΠGP =

[
M
N

]
QQ∗[M∗ N∗]. This shows337

ΠGP

[
M ′

N ′

]
=

[
M
N

]
Q

(
I +Q∗[M∗ N∗]∆

[
M
N

]
Q

)
Q−1.338

339

Note that

∥∥∥∥Q∗[M∗ N∗]∆ [MN
]
Q

∥∥∥∥ ≤ ‖∆‖ < 1 implies that I + Q∗[M∗ N∗]∆

[
M
N

]
Q340

is invertible in B(h2). Thus, ΠGP maps GP ′ one-to-one onto GP . By Proposition 2.7,341

we have γ(GP ′ ,GP ) = ~γ(GP ′ ,GP ) = ~γ(GP ,GP ′) < r. This proves N1(P, r) ⊂ B(P, r).342

By Definition 2.9, we have P ′ ∈ N2(P, r)⇔ P ∈ N1(P ′, r). Since P ′ ∈ B(P, r)⇔343

P ∈ B(P ′, r), it follows that N2(P, r) ⊂ B(P, r). This completes the proof.344

3. Main results: networked robust stability. In this section, we are345

interested in the robust stability conditions for the NCS shown in Fig. 3 when346

the plant, controller and communication channels are subject to simultaneous347

perturbations. First, the situation where a single two-port network is perturbed is348

considered. Then the general case of the networked robust stability in the face of349

simultaneous perturbations to the plant, controller and communication channels is350

investigated.351
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Fig. 4. Two-port NCS with one stage of two-port network
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Fig. 5. Standard closed-loop system equivalent to one-stage two-port NCS

3.1. One-stage two-port NCS. In this subsection, the robust stability result352

for the one-stage two-port NCS is established when norm-bounded perturbations to353

the network alone are considered. Before proceeding to the NCS, we introduce the354

following operator associated with a standard feedback system, which plays a crucial355

role in robust stability analysis [16]. Given a well-posed feedback system P#C, and356

with a little abuse of notation, we let357

P#C :=

[
I
P

]
(I − CP )−1[I − C].358

359

Observe that P#C =

[
I 0
0 −I

]
H(P,C) +

[
0 0
0 I

]
. Therefore, the stability of P#C is360

equivalent to the boundedness of P#C. When P#C is stable, the value ‖P#C‖−1361

is often called the robust stability margin.362

Following the derivation in [20], we equivalently transform into that in Fig. 5 to363

form a standard closed-loop system (P#C)#∆. Therefore, suppose that the nominal364

system P#C is stable, then the one-stage two-port NCS is stable if and only if365

(P#C)#∆ is stable. The robust stability of this system can be analyzed through366

the following asymptotic small-gain result.367

Lemma 3.1. Let A ∈ S and r ∈ (0, 1]. Then I − ∆A is stably invertible for all368

∆ ∈ S with ‖∆‖ < r if and only if369

(3.1) r ≤ min

 1

sup
k≥0
‖Akk‖

,
1

inf
j≥0
‖A(j)‖

 .370

Proof. If r ≤ 1

sup
k≥0
‖Akk‖

, then for all k ≥ 0, we have r ≤ 1

‖Akk‖
. Thus,371

‖∆kkAkk‖ < 1. By small-gain theorem, we obtain that 1 is not an eigenvalue of372

∆kkAkk for each k ≥ 0. Thus, I −∆A is invertible. Conversely, assume that I −∆A373

is invertible for all ∆ ∈ S with ‖∆‖ < r. For all matrices ∆̃kk with ‖∆̃kk‖ < r,374

construct a block diagonal operator ∆ such that ∆ii := ∆̃kk for i = k, and ∆ii := 0375

otherwise. Clearly, ∆ ∈ S and ‖∆‖ < r. By hypothesis, I −∆A is invertible. Then376

for each k ≥ 0, (I − ∆A)kk = In − ∆kkAkk is invertible for all matrices ∆̃kk with377
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‖∆̃kk‖ < r, where In is the identity matrix. Hence, it follows from [40, Theorem 8.1]378

that r ≤ 1

‖Akk‖
for each k ≥ 0, which shows that r ≤ 1

sup
k≥0
‖Akk‖

. Finally, similarly379

to the proof of [17, Theorem 4.2], we know that (I −∆A)−1 ∈ S for all ∆ ∈ S with380

‖∆‖ < r if and only if r ≤ 1

inf
j≥0
‖A(j)‖

. This completes the proof.381

It is worth noting that the first term
1

sup
k≥0
‖Akk‖

in inequality (3.1) is equal to382

infinity under the hypothesis in [17, Theorem 4.2]. An application of Lemma 3.1383

gives rise to a necessary and sufficient condition for robust stability of the one-stage384

two-port NCS.385

Theorem 3.2. Let P#C be stable and r ∈ (0, 1]. Then the two-port NCS in386

Fig. 4 is stable for all ∆ ∈ S with ‖∆‖ < r if and only if387

(3.2) r ≤ min

 1

sup
k≥0
‖(P#C)kk‖

,
1

inf
j≥0
‖(P#C)(j)‖

 .388

Remark 3.3. The first bound on the right side of inequality (3.2) ensures that389

(P#C)#∆ is well-posed. When (P#C)#∆ is well-posed, the second bound ensures390

that (P#C)#∆ is stable.391

3.2. Multiple-stage two-port NCS. The main result of this paper concerning392

the robust stability of the NCS is stated as follows, which extends the result of Zhao393

and Qiu [39] to the time-varying case.394

Theorem 3.4. Let P#C be stable and rp, rc, ri ∈ (0, 1]. Then the NCS in Fig. 3395

is stable for all P ′ ∈ B(P, rp), C ′ ∈ B(C, rc) and ∆i ∈ S with ‖∆i‖ < ri, i =396

1, 2, . . . , l, if and only if397

(3.3)

arcsin rp + arcsin rc +

l∑
i=1

arcsin ri ≤

min

arcsin
1

sup
k≥0
‖(P#C)kk‖

, arcsin
1

inf
j≥0
‖(P#C)(j)‖

 .

398

Remark 3.5. In condition (3.3), the following inequality:399

(3.4) arcsin rp + arcsin rc +

l∑
i=1

arcsin ri ≤ arcsin
1

sup
k≥0
‖(P#C)kk‖

400

guarantees that the NCS in Fig. 3 is well-posed, which will be discussed in following401

subsections. If the well-posedness of the NCS is satisfied, then condition (3.3) can be402

rewritten as403

(3.5) arcsin rp + arcsin rc +

l∑
i=1

arcsin ri ≤ arcsin
1

inf
j≥0
‖(P#C)(j)‖

.404
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Naturally, we can view the value
1

inf
j≥0
‖(P#C)(j)‖

as the stability margin of the NCS405

in Fig. 3 in the time-varying case. The larger the margin is, the more uncertainties406

the NCS can tolerate.407

Theorem 3.4 reduces to Theorem 3.2 when rp = 0, rc = 0 and ri = 0 for each408

integer i ∈ [2, l]. As an important special case of Theorem 3.4, the following result409

gives a necessary and sufficient condition for robust stability of LTV systems when410

only the plant is subject to uncertainty. We state this as a corollary.411

Corollary 3.6. Let P#C be stable and rp ∈ (0, 1]. Then P ′#C is stable for all412

P ′ ∈ B(P, rp) if and only if413

rp ≤ min

 1

sup
k≥0
‖(P#C)kk‖

,
1

inf
j≥0
‖(P#C)(j)‖

 .414

415

Proof. The proof follows directly from Theorem 3.4 by letting rc = 0 and416

ri = 0, i = 1, 2, . . . , l.417

The following result is an immediate consequence of Theorem 3.4 when the418

transmission matrices of the two-port channels have no uncertainties, i.e., ri = 0, 1 ≤419

i ≤ l.420

Corollary 3.7. Let P#C be stable and rp, rc ∈ (0, 1]. Then P ′#C ′ is stable for421

all P ′ ∈ B(P, rp) and C ′ ∈ B(C, rc) if and only if422

arcsin rp + arcsin rc ≤ min

arcsin
1

sup
k≥0
‖(P#C)kk‖

, arcsin
1

inf
j≥0
‖(P#C)(j)‖

 .423

424

Remark 3.8. We remark that some works, for instance [16] and [19], have given425

similar robust stability conditions for LTV systems. In [16], Feintuch derived a426

sufficient condition and a necessary condition for the robust stability under directed427

time-varying gap perturbations of the plant, respectively. These two conditions are428

different in the time-varying case. In our study, we obtain a necessary and sufficient429

condition for the robust stability of LTV systems for the case when the plant is subject430

to the standard gap metric uncertainty. In [19], necessary and sufficient conditions431

have been obtained for the feedback robust stability based on the linear operator432

theory, but the causality of systems is not considered. Nevertheless, our models for433

systems and uncertainties incorporate the causality issue. In addition, the uniform434

boundedness condition is in fact necessary in [19], but is not required in our main435

results.436

In the rest of this paper, we will give the proof of Theorem 3.4. The proof of437

the sufficiency is a generalization of the idea introduced in [16] and [39] to the time-438

varying case. The key point is the proof of the necessity, which makes use of the439

one-vector interpolation problem for nest algebras [30].440

3.3. Sufficiency of the robust stability condition. In this subsection, we441

will prove the sufficiency part of Theorem 3.4. The proof is closely related to the442

fact that arcsin δ(P1, P2) is a metric for P1, P2 ∈ L, called the angular metric [33].443

We first briefly review the minimal angle between subspaces in a Hilbert space H.444
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Given two closed subspaces X and Y of H, the minimal angle between X and445

Y is defined as θmin(X ,Y) := inf{θ(x, y) : 0 6= x ∈ X , 0 6= y ∈ Y}, where446

θ(x, y) := arccos
|〈x, y〉|
‖x‖‖y‖

is the angle between two nonzero vectors x, y ∈ H. When447

P#C is stable, θmin(GP ,G′C) = arcsin ‖P#C‖−1 (see [19]).448

We are now ready to show the sufficiency part of the proof for Theorem 3.4.449

Proof. Assume that condition (3.3) holds. We first prove that P ′ is stabilizable450

for all P ′ ∈ B(P, rp). If there exists P ′ ∈ B(P, rp) such that P ′ is not stabilizable,451

then, by [16, Theorem 6.1.3], we have that the operator ΠY⊥ |X ′ is not invertible,452

where X ′ := GP ′ and Y := G′C . Then one of the following two possibilities occurs:453

(i) τ (ΠY⊥ |X ′) is not bounded below; (ii) ΠX ′ΠY⊥ is not injective.454

In case (i), for all ε > 0, there exists a unit vector x′ ∈ X ′ such that455

‖ΠY⊥x′‖ < ε. Setting y := ΠYx
′ ∈ Y, we obtain that θ(x′, y) = arccos

|〈x′, y〉|
‖x′‖‖y‖

=456

arccos

(
1− ‖ΠY⊥x′‖2

‖y‖

)
< arcsin ε. Since δ(P ′, P ) < rp, we can choose r̄p ∈ (0, rp)457

such that δ(P ′, P ) ≤ r̄p. This implies ‖(I − ΠGP )x′‖ ≤ r̄p. Let x = ΠGP x
′ ∈ GP .458

Then θ(x′, x) ≤ arcsin r̄p. Since P is stabilizable, it follows from Theorem 2.5 that459

P admits normalized right and left coprime factorizations P = NM−1 = M̃−1Ñ .460

Clearly, GP = R
([
M
N

])
= K([−Ñ M̃ ]). Then, we can write x =

[
M
N

]
u for461

some u ∈ h2. Let xj =

[
M
N

]
Eju. It is easily seen that xj ∈ (GP (j))

⊥ and462

lim
j→∞

θ(xj , x) = lim
j→∞

arccos
‖Eju‖
‖u‖

= 0, where the last equality follows from that {Ej}463

converges to I in the strong operator topology. Thus, there exists j1 > 0 such that464

θ(xj , x) < ε for all j ≥ j1. Similarly, we can find yj ∈ (G′C(j))
⊥ such that θ(yj , y) < ε465

for all j ≥ j2. Consequently, for all j ≥ max{j1, j2},466

arcsin r̄p + arcsin ε+ 2ε > θ(x′, x) + θ(x′, y) + θ(xj , x) + θ(yj , y) ≥ θ(xj , yj)467

≥ θmin

(
(GP (j))

⊥, (G′C(j))
⊥
)

= arcsin ‖P (j)#C(j)‖−1 = arcsin ‖(P#C)(j)‖−1,468
469

where the last equality follows from the fact that (P#C)(j) = P (j)#C(j) for each j ≥470

0. Since the above inequality holds for all ε > 0, we get rp > r̄p ≥
1

inf
j≥0
‖(P#C)(j)‖

,471

which leads to a contradiction to condition (3.3).472

In case (ii) we proceed similarly. Since ΠX ′ΠY⊥ is not injective, there exists a473

nonzero vector z ∈ Y⊥ ∩ (X ′)⊥. Define w = ΠG⊥
P
z. Note that γ

(
(X ′)⊥,G⊥P

)
=474

γ (X ′,GP ) = δ(P ′, P ) ≤ r̄p implies that θ(w, z) ≤ arcsin r̄p. Noting w ∈ G⊥P =475

(K[−Ñ M̃ ])⊥ = R
([
−Ñ∗
M̃∗

])
, we obtain that w =

[
−Ñ∗
M̃∗

]
v for some v ∈ h2. We476

set wj =

[
−Ñ∗
M̃∗

]
Ejv. It is easy to verify that wj ∈ G⊥P ⊂ (GP (j))

⊥ and θ(wj , w) < ε477

for all j ≥ j3. Also, there exists zj ∈ (G′C(j))
⊥ such that θ(zj , z) < ε for j ≥ j4.478
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Therefore, for all j ≥ max{j3, j4},479

arcsin r̄p + 2ε > θ(w, z) + θ(wj , w) + θ(zj , z) ≥ θ(wj , zj) ≥ θmin

(
(GP (j))

⊥, (G′C(j))
⊥
)

480

= arcsin ‖(P#C)(j)‖−1.481482

Hence, rp > r̄p ≥
1

inf
j≥0
‖(P#C)(j)‖

, which also violates condition (3.3).483

The stabilizability of C ′ ∈ B(C, rc) can be shown similarly. By Theorem 2.5,484

it follows that P ′ and C ′ have right coprime factorizations P ′ = N ′(M ′)−1 and485

C ′ = V ′(U ′)−1, respectively. Denote

[
Mi

Ni

]
= (I + ∆i) · · · (I + ∆1)

[
M ′

N ′

]
and486 [

Vi
Ui

]
= (I + ∆i+1)−1 · · · (I + ∆l)

−1
[
V ′

U ′

]
. Then the ith perturbed plant P ′i = NiM

−1
i487

is well-defined and so is the perturbed controller C ′i = ViU
−1
i , where P ′0 = P ′ and488

C ′l = C ′. To complete the proof, we need to prove that the perturbed closed-loop489

system P ′i#C
′
i is stable for i = 0, 1, . . . , l. We first show the well-posedness of P ′i#C

′
i.490

Since P#C is stable, it follows that I − PC is invertible; that is, In − (PC)kk is491

invertible for each k ≥ 0. It follows from Proposition 2.8 that P ′kk ∈ B(Pkk, rp)492

and C ′kk ∈ B(Ckk, rc). Moreover, ‖(∆i)kk‖ < ri. Note that (P#C)kk = Pkk#Ckk.493

Then, by hypothesis (3.4) and [39, Theorem 2], we know that for all k ≥ 0,494

(I − P ′iC ′i)kk = In − (P ′i )kk(C ′i)kk is invertible for each k ≥ 0. Immediately, I − P ′iC ′i495

is invertible. Therefore, P ′i#C
′
i is well-posed.496

It remains to show that P ′i#C
′
i is stable. Clearly, the sequence {‖P (j)#C(j)‖}∞j=1497

is non-increasing in j. Then inf
j≥0
‖(P#C)(j)‖ = lim

j→∞
‖P (j)#C(j)‖. This implies498

that arcsin rp + arcsin rc +
l∑

i=1

arcsin ri ≤ lim
j→∞

arcsin
1

‖P (j)#C(j)‖
. It follows from499

Definition 2.9 and Proposition 2.10 that P ′i ∈ N1

(
P ′i−1, ri

)
⊂ B

(
P ′i−1, ri

)
, C ′i ∈500

N2

(
C ′i+1, ri+1

)
⊂ B

(
C ′i+1, ri+1

)
. By the triangular inequality of the angular metric501

[33, Proposition 1], we have for each j ≥ 0,502

arcsin δ (P ′i (j), P
′(j)) ≤

i∑
k=1

arcsin δ
(
P ′k(j), P ′k−1(j)

)
≤

i∑
k=1

arcsin δ
(
P ′k, P

′
k−1
)
,503

arcsin δ (C ′i(j), C
′(j)) ≤

l∑
k=i+1

arcsin δ
(
C ′k(j), C ′k−1(j)

)
≤

l∑
k=i+1

arcsin δ
(
C ′k, C

′
k−1
)
.504

505

Again from Proposition 2.8, we know that P ′(j) ∈ B (P (j), rp) and C ′(j) ∈506

B (C(j), rc). Applying the triangular inequality again gives507

arcsin δ (P ′i (j), P (j)) < arcsin rp +

i∑
k=1

arcsin δ
(
P ′k, P

′
k−1
)
,508

arcsin δ (C ′i(j), C(j)) < arcsin rc +

l∑
k=i+1

arcsin δ
(
C ′k, C

′
k−1
)
.509

510
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This implies that511

lim
j→∞

arcsin δ (P ′i (j), P (j)) ≤ arcsin rp +

i∑
k=1

arcsin δ
(
P ′k, P

′
k−1
)
,512

lim
j→∞

arcsin δ (C ′i(j), C(j)) ≤ arcsin rc +

l∑
k=i+1

arcsin δ
(
C ′k, C

′
k−1
)
.513

514

Thus, we have515

lim
j→∞

(arcsin δ (P ′i (j), P (j)) + arcsin δ (C ′i(j), C(j)))516

≤ arcsin rp + arcsin rc +

i∑
k=1

arcsin δ
(
P ′k, P

′
k−1
)

+

l∑
k=i+1

arcsin δ
(
C ′k, C

′
k−1
)

517

< arcsin rp + arcsin rc +
l∑

i=1

arcsin ri ≤ lim
j→∞

arcsin
1

‖P (j)#C(j)‖
.518

519

This means there exists j0 > 0 such that520

arcsin δ (P ′i (j0), P (j0)) + arcsin δ (C ′i(j0), C(j0)) < arcsin
1

‖P (j0)#C(j0)‖
.521

522

By [19, Theorem 4], we know that the closed-loop system P ′i (j0)#C ′i(j0) is stable.523

Now it is easy to see that NiM
−1
i and ViU

−1
i is a right coprime factorizations524

of P ′i and C ′i, respectively. According to Theorem 2.5, C ′i has a left coprime525

factorization C ′i = Ũ−1i Ṽi. Let Wi := ŨiMi − ṼiNi. Then Wi is invertible because526

P ′i#C
′
i is well-posed. It can be easily verified that Ni(j0)M−1i (j0) is a right coprime527

factorization of P ′i (j0), and Ũ−1i (j0)Ṽi(j0) is a left coprime factorization of C ′i(j0).528

Since P ′i (j0)#C ′i(j0) is stable, it follows from Lemma 2.4 that Wi(j0) is stably529

invertible. We partition Wi into Wi =

[
Ej0WiEj0 |Ej0

h2 0
Fj0WiEj0 |Ej0h2

Wi(j0)

]
=:

[
Wi1 0
Wi2 Wi3

]
.530

Consequently, W−1i =

[
W−1i1 0

−W−1i3 Wi2W
−1
i1 W−1i3

]
is causal and bounded; that is,531

ŨiMi − ṼiNi is stably invertible. Again, from Lemma 2.4, we obtain that P ′i#C
′
i532

is stable for i = 0, 1, . . . , l. Therefore, the NCS in Fig. 3 is stable. This finishes the533

proof for the sufficiency part.534

3.4. Necessity of the robust stability condition. The necessity part of535

Theorem 3.4 will be proved by using the contrapositive argument. First, assuming536

that condition (3.4) fails, we will employ the idea in the proof of necessity part of [39,537

Theorem 2] to show that there exists i ∈ {0, 1, . . . , l} such that P ′i#C
′
i is not well-538

posed. Finally, given condition (3.5) violated, we will construct a series of uncertainty539

quartets {∆i}li=1 ⊂ S, a perturbed plant P ′ and a perturbed controller C ′, which540

destabilize the NCS. The stability of a feedback system is determined by the minimum541

angle between the graphs of the plant and controller. In order to construct ∆i, we aim542

to rotate a specific vector in the subspace GP (j) for some j with cascaded operators543

in the form of I + ∆i. Then the uncertainty quartets ∆i ∈ S for 1 ≤ i ≤ l will be544

completely constructed through one-vector interpolation problem for nest algebras.545

As a result, we first briefly review the direct rotations of subspaces in a Hilbert space546

H. The background and notation follow from [8].547
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Given two closed subspaces X and Y of a Hilbert space H, It is shown548

in [8] that if ‖ΠX − ΠY‖ < 1, then there exists a unitary operator U such that549

UΠX = ΠYU , namely, X can be transformed to Y by U . Define the following550

isometries: X1 : K(X1)⊥ → H and X2 : K(X2)⊥ → H with X1

(
K(X1)⊥

)
= X551

and X2

(
K(X2)⊥

)
= X⊥. Then X1X

∗
1 = ΠX , X2X

∗
2 = ΠX⊥ and [X1 X2]−1 =

[
X∗1
X∗2

]
.552

We can write U = [X1 X2]

[
X∗1UX1 X∗1UX2

X∗2UX1 X∗2UX2

] [
X∗1
X∗2

]
=: X

[
C0 −S1

S0 C1

]
X∗, where553

X := [X1 X2]. Let Θ = arccos(C0C
∗
0 )

1
2 be the continuous functional calculus for554

(C0C
∗
0 )

1
2 [16, Chapter 2]. Then θmin(X ,Y) is the minimum singular value of Θ [8].555

Definition 3.9 ([8, Definition 3.1]). A unitary solution U = X

[
C0 −S1

S0 C1

]
X∗ of556

UΠX = ΠYU is called a direct rotation from X to Y if it satisfies that C0 ≥ 0, C1 ≥ 0557

and S1 = S∗0 .558

As shown in [8], among all unitary transformations mapping X to Y, the direct559

rotation is the “most economic” in some sense.560

Proposition 3.10 ([8, Proposition 3.2]). A direct rotation exists if and only if561

dimX ∩ Y⊥ = dimX⊥ ∩ Y.562

Now, assume that dimX ∩Y⊥ = dimX⊥ ∩Y. Following the derivation in [8], we563

obtain the direct rotation from X to Y as U = X exp

([
0 −A
A∗ 0

])
X∗, where the564

minimum singular value of A is θmin(X ,Y). For λ ∈ [0, 1], let565

Z = X exp

([
0 −λA
λA∗ 0

])
X∗X .566

567

Then a direct rotation from X to Z is X exp

([
0 −λA
λA∗ 0

])
X∗, and it can be seen568

in [34] that X exp

([
0 −(1− λ)A

(1− λ)A∗ 0

])
X∗ is a direct rotation from Z to Y.569

Consequently, we get θmin(X ,Z) = λθmin(X ,Y) and θmin(Z,Y) = (1−λ)θmin(X ,Y).570

This implies that571

(3.6) θmin(X ,Y) = θmin(X ,Z) + θmin(Z,Y).572

Notably, in the proof of the necessity part of Theorem 3.4, we will make use of the573

direct rotations of one-dimensional subspaces in Hilbert space.574

The uncertainty quartets ∆i ∈ S for 1 ≤ i ≤ l will be completely constructed575

through the following one-vector interpolation problem for nest algebras [30].576

Lemma 3.11. Let x, y ∈ h2. There exists A ∈ S such that Ax = y if and only577

if there exists a constant c such that for each k ≥ 0, ‖Eky‖ ≤ c‖Ekx‖. If such an A578

exists, it can be chosen so that ‖A‖ ≤ c.579

The stability of feedback systems can be characterized in terms of the minimal580

angle between the graphs of the plant and controller [16, Chapter 9]. We state this581

as a proposition.582

Proposition 3.12. The closed-loop system P#C is stable if and only if583

θmin (GP ,G′C) > 0.584585
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Proof of the necessity of Theorem 3.4. We first assume that condition (3.4) does586

not hold. Then there exists k0 ≥ 0 such that587

arcsin rp + arcsin rc +

l∑
i=1

arcsin ri > arcsin
1

‖Pk0k0
#Ck0k0

‖
.588

589

Consider the nominal system Pk0k0#Ck0k0 . From the proof of [39, Theorem 2], we590

know that there exist matrices ∆p,k0 ,∆c,k0 and ∆i,k0 with ‖∆p,k0‖ < rp, ‖∆c,k0‖ < rc591

and ‖∆i,k0
‖ < ri, i = 1, 2, . . . , l, such that P ′l,k0

#Ck0k0
is not well-posed. Here592

P ′l,k0
:= Nl,k0M

−1
l,k0

is a right coprime factorization of P ′l,k0
, where

[
Ml,k0

Nl,k0

]
:=593

(I+∆c,k0
)(I+∆l,k0

) · · · (I+∆1,k0
)(I+∆p,k0

)

[
Mk0k0

Nk0k0

]
, and NM−1 is a right coprime594

factorization of P . Let V U−1 be a right coprime factorization of C. It is easy to check595

that Vk0k0
U−1k0k0

is a right coprime factorization of Ck0k0
. We know from Lemma 2.4596

that

[
Ml,k0 Vk0k0

Nl,k0
Uk0k0

]
is not invertible.597

Decompose h2 as Ek0−1h2 ⊕ (Ek0
− Ek0−1)h2 ⊕ Fk0

h2, and define the following598

operators on h2 via599

∆p :=

 0
∆p,k0

0

 , ∆c :=

 0
∆c,k0

0

 and ∆i :=

 0
∆i,k0

0

600

601

for i = 1, 2, . . . , l. Apparently, ∆p,∆c,∆i ∈ S with ‖∆p‖ < rp, ‖∆c‖ < rc and602

‖∆i‖ < ri. We set

[
M ′

N ′

]
= (I + ∆p)

[
M
N

]
and

[
V ′

U ′

]
= (I + ∆c)

−1
[
V
U

]
. Then603

P ′ = N ′(M ′)−1 ∈ N1(P, rp) ⊂ B(P, rp), and C ′ = V ′(U ′)−1 ∈ N2(C, rc) ⊂ B(C, rc).604

Define

[
Ml

Nl

]
:= (I + ∆l)(I + ∆l−1) · · · (I + ∆1)

[
M ′

N ′

]
. Then P ′l := NlM

−1
l is a605

right coprime factorization of P ′l . It is easy to verify that (Nl)k0k0
((Ml)k0k0

)−1 and606

V ′k0k0
(U ′k0k0

)−1 are right coprime factorizations of (P ′l )k0k0
and C ′k0k0

, respectively.607

Furthermore, by the definitions of ∆p,∆c and ∆i, we see that

[
(Ml)k0k0

V ′k0k0

(Nl)k0k0
U ′k0k0

]
=608

(I+ ∆c,k0
)−1

[
Ml,k0

Vk0k0

Nl,k0
Uk0k0

]
. Hence, the matrix in the left side of the above equality609

is not invertible, which shows that (I −P ′lC ′)k0k0
= In − (P ′lC

′)k0k0
is not invertible.610

This violates the well-posedness of P ′l #C
′. Therefore, we have shown the necessity of611

the condition in (3.4).612

In the rest, it suffices to show the necessity of the condition in (3.5). The proof613

proceeds by using the contrapositive argument. Suppose that condition (3.5) does614

not hold. Clearly, we have for all j ≥ 0, arcsin
1

‖P (j)#C(j)‖
<

q∑
i=1

arcsin ri, where615

q = l + 2, rl+1 := rp and rl+2 := rc. For i = 1, . . . , q, we can always choose616

0 < r̃i,j < ri such that arcsin
1

‖P (j)#C(j)‖
=

q∑
i=1

arcsin r̃i,j . By Proposition 2.10,617

we have N1(P, rp) ⊂ B(P, rp) and N2(C, rc) ⊂ B(C, rc). Thus, we only need to618

construct {∆i}qi=1 ⊂ S satisfying ‖∆i‖ < ri such that P ′q#C is unstable, where619

GP ′
q

=

(
q∏

k=1

(I + ∆q+1−k)

)
GP .620
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Note that GP (j) and G′C(j) are two closed subspaces of Fjh2, and for j ≥ 0, it holds621

that θmin

(
GP (j),G′C(j)

)
= arcsin

1

‖P (j)#C(j)‖
=

q∑
i=1

arcsin r̃i,j . Now, we can choose622

uj ∈ GP (j) and wj ∈ G′C(j) satisfying θ(uj , wj) =
q∑

i=1

arcsin r̃i,j . Let U0,j = span{uj}623

and W0,j = span{wj} be the one-dimensional subspaces spanned by uj and wj ,624

respectively. Note that dimU0,j∩W⊥0,j = dimU⊥0,j∩W0,j . By Proposition 3.10, a direct625

rotation from U0,j to W0,j is given by X exp

([
0 −A
A∗ 0

])
X∗, where the minimum626

singular value of A is θmin (U0,j ,W0,j) =
q∑

i=1

arcsin r̃i,j . Denote the direct rotation627

operator as628

φ(λ) := X exp

([
0 −λA
λA∗ 0

])
X∗, λ ∈ [0, 1].629

Set λi =

i∑
k=1

arcsin r̃k,j

q∑
k=1

arcsin r̃i,j

and λq = 1. Denote Ui,j = φ(λi)U0,j . It is630

easy to see that θmin (Ui,j ,U0,j) = λiθmin (U0,j ,W0,j) for each i = 1, . . . , q,631

which shows θmin (Uq,j ,U0,j) =
q∑

i=1

arcsin r̃i,j . By (3.6), we get θmin (U0,j ,W0,j) =632

θmin (U0,j ,Uq,j) + θmin (Uq,j ,W0,j) . Hence θmin (Uq,j ,W0,j) = 0. Furthermore, we633

observe that634

Ui,j = φ(λi)φ(λi−1)∗Ui−1,j = X exp

([
0 (λi−1 − λi)A

(λi − λi−1)A∗ 0

])
X∗Ui−1,j ,635

636

yielding that θmin (Ui,j ,Ui−1,j) = arcsin r̃i,j for i = 1, . . . , q.637

Let Qi,j : U⊥i,j → Ui−1,j be the parallel projection onto Ui−1,j along Ui,j [19],638

Then ‖Qi,j‖ =
1

r̃i,j
. It is straightforward to check that there exists vi,j ∈ U⊥i,j with639

‖vi,j‖ = 1, such that ‖Qi,jvi,j‖ =
1

r̃i,j
>

1

ri
and Qi,jvi,j = vi,j + Qi+1,jvi+1,j for i =640

1, . . . , q, where Qq+1,jvq+1,j := λjwj for some λj ∈ C. Since lim
j→∞

‖Ej+1Qi,jvi,j‖ >
1

ri
,641

it follows that there exists j1 satisfying ‖Ej1+1Qi,j1vi,j1‖ >
1

ri
for all 1 ≤ i ≤ q.642

Therefore, for all j ≥ j1 + 1, we have
‖Ejvi,j1‖

‖EjQi,j1vi,j1‖
≤ 1

‖Ej1+1Qi,j1vi,j1‖
< ri.643

Let ci = sup
j≥j1+1

‖Ejvi,j1‖
‖EjQi,j1vi,j1‖

. Then ci < ri. We write vi,j1 = (vj1+1, vj1+2, . . .)644

and Qi,j1vi,j1 = (yj1+1, yj1+2, . . .). Set vi = (0, 0, . . . , 0, vj1+1, vj1+2, . . .), Qivi =645

(0, 0, . . . , 0, yj1+1, yj1+2, . . .) ∈ h2. Note that Ejvi = 0 for j = 1, . . . , j1.646

Then for all j ≥ 0, ‖Ejvi‖ ≤ ci‖EjQivi‖. In view of Lemma 3.11, there647

exists ∆i ∈ S and ‖∆i‖ ≤ ci < ri satisfying that ∆i(Qivi) = vi. Clearly,648

∆i(j1)(Qi,j1vi,j1) = vi,j1 . Let ∆i = −∆i. Then ∆i ∈ S with ‖∆i‖ < ri such that649 (
q∏

k=1

(I + ∆q+1−k)(j1)

)
(Q1,j1v1,j1) = λj1wj1 for some λj1 ∈ C. Since Q1,j1v1,j1 ∈650
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U0,j1 and λj1wj1 ∈ W0,j1 . Then we have θmin

(
q∏

k=1

(I + ∆q+1−k)(j1)U0,j1 ,W0,j1

)
= 0.651

This shows θmin

(
q∏

k=1

(I + ∆q+1−k)(j1)GP (j1),G′C(j1)

)
= 0 because U0,j1 ⊂ GP (j1) and652

W0,j1 ⊂ G′C(j1)
. We set

[
Mi

Ni

]
=

(
i∏

k=1

(I + ∆i+1−k)

)[
M
N

]
for i = 1, . . . , q. In case653

Mq is invertible, in light of Proposition 3.12, P ′q#C is unstable, hence, the NCS is654

unstable. This completes the necessity part of the proof for condition (3.5). If not, we655

assume that Mi−1 is invertible, but Mi is not invertible for some i. We will construct656

∆̂i ∈ S satisfying ‖∆̂i‖ < ri such that (I + ∆̂i)(j1)(Qi,j1vi,j1) = Qi+1,j1vi+1,j1 and657

M ′i is invertible, where

[
M ′i
N ′i

]
:= (I + ∆̂i)

[
Mi−1
Ni−1

]
.658

Write ∆i =

[
∆i1 ∆i2

∆i3 ∆i4

]
and Qi,j1vi,j1 =

[
u
e

]
, where u = (uj1+1, uj1+2, uj1+3, . . .)659

and e = (ej1+1, ej1+2, ej1+3, . . .). Note that

∥∥∥∥[ue
]∥∥∥∥ 6= 0. Thus at least one of u or e is660

not 0. Without loss of generality, assume u 6= 0. We consider the following two cases:661

(1) e = 0: In this case, let ∆̂i =

[
∆i1 0
∆i3 ∆i4

]
. It is easy to check that662

∆̂i ∈ S with ‖∆̂i‖ < ri such that (I + ∆̂i)(j1)(Qi,j1vi,j1) = Qi+1,j1vi+1,j1 and663

M ′i = Mi−1 + ∆i1Mi−1 is invertible.664

(2) e 6= 0: In this case, since u 6= 0, we may assume that uj1+1 = 0, uj1+2 6= 0665

and ej1+1 6= 0. Define666

V1 :=



ε0In
0 ε1In

0 −ε2uj1+3 ⊗ uj1+2

‖uj1+2‖2
ε2In

0 −ε3uj1+4 ⊗ uj1+2

‖uj1+2‖2
0 ε3In

...
...

...
...

. . .


667

V2 :=


0

−ε1uj1+2 ⊗ ej1+1

‖ej1+1‖2
0

0 0 0
...

...
. . .

 ,668

669

where V1 and V2 are conformal to ∆i1(j1) and ∆i2(j1), respectively, 0 < εk <670

δk for each k ≥ 0, and In is the identity matrix. If all the eigenvalues671

of
(
Mi(j1)(Mi−1(j1))−1

)
kk

are zero, take δk = 1. If some eigenvalue of672 (
Mi(j1)(Mi−1(j1))−1

)
kk

is nonzero, let δk = min{|λ| : λ is an eigenvalue of673 (
Mi(j1)(Mi−1(j1))−1

)
kk

and λ 6= 0}. Then V1u + V2e = 0. Let ∆̂i =

[
∆̂i1 ∆̂i2

∆i3 ∆i4

]
,674

where ∆̂i1 :=

[
0 0
0 ∆i1(j1) + V1

]
and ∆̂i2 :=

[
0 0
0 ∆i2(j1) + V2

]
. Then it is675

straightforward to check that ∆̂i ∈ S and (I + ∆̂i)(j1)(Qi,j1vi,j1) = Qi+1,j1vi+1,j1 .676

Moreover, we can choose εk > 0 sufficiently small so that ‖∆̂i‖ < ri and677

M ′i(j1) = Mi(j1) + V1Mi−1(j1) + V2Ni−1(j1) is invertible. We partition M ′i into678
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M ′i =

[
Ej1M

′
iEj1 |Ej1

h2
0

Fj1M
′
iEj1 |Ej1

h2 M ′i(j1)

]
. Note that Ej1M

′
iEj1 |Ej1

h2 = Ej1Mi−1Ej1 |Ej1
h2 is679

invertible. Hence, M ′i is invertible.680

Remark 3.13. In the proof of the necessity of Theorem 3.4, it is required that the681

destabilizing perturbations of the two-port networks are causal operators. The key682

step to achieve this target is via solving the one-vector interpolation problem for nest683

algebras.684

4. Conclusions. In this paper, we consider the robust stability problem for a685

time-varying two-port NCS. The uncertainties in the plant and controller are measured686

by the gap metric. The uncertainty involved in the two-port network is represented687

by the transmission matrix I + ∆, where ∆ ∈ S is bounded by the operator norm.688

We obtain a necessary and sufficient condition in the form of an “arcsine” inequality,689

for robust stability of the NCS, which generalizes a similar result for linear time-690

invariant NCSs. The sufficiency is mainly derived from the triangular inequality of691

the angular metric. The key step in the proof of the necessity relies on the one-692

vector interpolation problem for nest algebras. Furthermore, as one of the important693

contributions of this paper, a necessary and sufficient condition for robust stability694

of LTV systems has been provided for the case when gap-metric perturbations to695

the plant alone are considered. Notably, our models for systems and uncertainties696

incorporate the causality issue, which is often neglected in the previous works. The697

optimal robust controller design problem can be directly motivated by our stability698

condition, and it will be taken as a future research direction based on the time-varying699

controller design technique in [18].700
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