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Abstract— In this paper, we study the robust stabilization
of a networked control system (NCS) with the communication
channels described by cascade two-port networks. Simultane-
ous uncertainties are assumed to be in the plant, controller
and two-port communication channels. The cascade two-port
connections apply to the scenario where signals in the NCS are
required to pass through bidirectional communication channels
separated by several relays. Distortions and interferences are
taken into account at each stage during the communication.
In terms of robustness, we consider H∞ norm bounded un-
certainties in the transmission matrices of the communication
channels as well as the gap metric uncertainties in the plant
and controller. A necessary and sufficient condition for the
robust stability of the NCS is given in the form of an “arcsin”
inequality, taking advantages of the properties of the canonical
angles between subspaces defined on system graphs. With the
analysis result, the synthesis problem can be solved through a
tractable H∞ optimization.

I. INTRODUCTION

Robust control and, in particular, robust stabilization prob-
lems have been shown to be critical in the analysis and design
of control systems with inaccurate or partially known models
and communication uncertainties.

In order to address robust stabilization problems, appropri-
ate distances defined on linear time-invariant (LTI) systems
are fundamental to characterize the uncertainties. A natural
and mathematically tractable method to model uncertain
dynamics is through the gap metric and its variations, among
which the gap [1]–[3], the pointwise gap [4] and the ν-
gap [5], [6] have been intensively studied. The work [5]
shows that the ν-gap is superior to the others for describing
the largest set of systems given the same robust stability
condition. We adopt the gap metric in this study to measure
the uncertainties in the plant and controller for the sake of
simplicity, and most of the results still hold with similar
arguments for the ν-gap and the pointwise gap. As long
as the uncertainties can be quantified, problems of robust
stabilization can be formulated. The robust stabilization
problem of a standard closed-loop system (see Fig. 1) has
been well studied and neatly solved in the last decades
[3]–[9]. Considering the uncertainties both in the plant and
the controller, the works [4], [9] strengthen the stability
condition by introducing the angular gap metric, which is
the “arcsin” of the gap (or the pointwise gap). It is seen that

*This work was supported in part by the Research Grants Council of
Hong Kong Special Administrative Region, China, under projects 618511
and T23-701/14N.

The authors are with the Department of Electronic and
Computer Engineering, the Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong
dzhaoaa@connect.ust.hk, eeqiu@ece.ust.hk

 

Fig. 1: A Standard Closed-Loop System

...

Fig. 2: An NCS with Two-Port Connections

the gap metric and its variations play an important role in
robust stabilization. Furthermore, these metrics can be used
to measure the uncertainties of a feedback system with a
more general setup, bringing about some concise analytic
results.

Practically in most systems, the control signals are trans-
mitted through imperfect communication channels. As the
quality of control heavily relies on the communication chan-
nels, it is meaningful to consider an robust stabilization
problem of a networked control system (NCS) with channel
uncertainties. An NCS differs from a standard closed-loop
system as the information exchanged between the plant
and controller is through communication networks [10].
The communication channels in an NCS can be modeled
differently so as to reveal actual situations. In our study, we
give a two-port NCS model by extending the standard closed-
loop system (Fig. 1) to the feedback system with cascade
two-port connections (Fig. 2). Based on the architecture of
the two-port NCS, we measure the dynamic uncertainties in
the plant and controller with the gap metric and measure
those in the two-port networks with H∞-norm bound on the
perturbations to transmission matrices. Our formulation of
robust stabilization problem is mainly motivated by the ap-
plication scenario on stabilizing a feedback system where the
plant and the controller cannot communicate directly and the
signals can only pass through communication networks with
several relays, as in, for example, satellite networks [11],
wireless sensor networks [12] and so on. Moreover, each
sub-system between two neighbouring relays, representing a
communication channel, may involve not only the multiplica-
tive distortion on the transmitted signal itself but the additive
interference caused by the signal in the reverse direction,
which is usually encountered in a bidirectional wireless



network subject to channel fading or under malicious attacks
[13]. So far, we have presented the architecture of our two-
port NCS model and formulated the robust stabilization
problem by considering uncertainties in different parts of
the NCS with different measures. The uncertain two-port
networks play a leading role in our NCS model.

Two-port network is not a new concept and has been
studied over decades for different purposes. Historically, the
two-port network was originally introduced in the electrical
circuit theory [14]. Later, the two-port network was borrowed
to represent LTI systems in book [15], where an LTI system
is characterized by a chain-scattering representation, which
is essentially a two-port network. Recently, some approaches
based on the two-port network to modeling the communica-
tion in a networked feedback system is studied in [16], where
uncertain two-port connections are used to introduce channel
uncertainties, based on which we propose our cascade two-
port communication model.

One of the contributions of our study is a clean result on
analysing the stability of a feedback system with multiple
sources of uncertainties. As we know, a general approach
to handling the robust stabilization problem with structured
uncertainties is to solve a µ-synthesis problem related to
the structured singular value, which is difficult when there
are multiple sources of uncertainties in the model [17].
Surprisingly, by generalizing the “arcsin” theorem [9] for
a standard closed-loop system, we are able to give a concise
necessary and sufficient robust stability condition for the
two-port NCS. Furthermore, as the stability margin given
by the stability condition of the two-port NCS coincides
with that of the standard closed-loop system, the synthesis
problem can be solved with the same approaches, i.e., an
H∞ optimization.

Notice that there are previous works on robust stabilization
of NCSs with special architectures and various uncertainty
descriptions. For example, the work [18] considers a plant
with parametric uncertainties over networks subject to packet
loss, the work [19] considers a plant with polytopic un-
certainties in its coefficients over a communication channel
subject to fadings and so on. The differences of our work
from the previous ones are that we model the dynamic uncer-
tainties not only in the plant but in the controller and that our
channel model characterizes bi-directional communication
involving both distortions and interferences.

This paper is organized as follows. In Section II, we
introduce the notation system and preliminaries of the robust
control problem related to the standard closed-loop system.
In Section III, the physical meaning of a two-port network
is discussed, then a two-port NCS is modeled and a stability
criterion for the NCS is given. In Section IV, we present
our main results, where a necessary and sufficient robust
stability condition is given for the NCS. Last, we summarize
our contribution and discuss future work in Section V. Most
of the proofs of the lemmas and theorems are omitted due
to the space limitation.

II. PRELIMINARY RESULTS

A. Notation

Let F = R or C be the real or complex field and Fn be
the linear space of n-dimensional vectors over the field F.
For matrix A ∈ Fm×n, its conjugate transpose is denoted
by A∗ and its k-th singular value is denoted by the symbol
σk(A), k = 1, 2, . . . ,min{m,n}, in a nonincreasing order.
The spectral norm of A is defined as ‖A‖ = σ1(A), and the
range of A is R(A).

We assume that all the systems in this paper are
continuous-time LTI systems represented by its transfer
function and the symbol s of the transfer functions may be
omitted for briefness. L2 (L∞, respectively) and H2 (H∞,
respectively) denote the standard Lebesgue and Hardy 2-
spaces (∞-spaces, respectively). RL∞ (RH∞, respectively)
consists of all the real rational members of L∞ (H∞,
respectively). P denotes the field of real rational transfer
functions. For transfer function P (s) ∈ Pm×n, its conjugate
is denoted as P∼(s) = PT (−s).

Two transfer matrices M and N in RH∞ are right
coprime if there exist transfer matrices Xr and Yr in RH∞
such that

XrM + YrN = I.

Similarly, two transfer matrices M̃ and Ñ in RH∞ are left
coprime if there exist transfer matrices Xl and Yl in RH∞
such that

M̃Xl + ÑYl = I.

It is known [8] that P admits right and left coprime factor-
izations:

P = NM−1 = M̃−1Ñ ,

where M,N, M̃, Ñ ∈ RH∞.
With the input of a possibly unstable system P as u and

the output as y, the graph of P is defined as

GP =

{[
u
y

]
: u ∈ H2, y = Pu ∈ H2

}
.

Following some simple argument, we obtain that

GP =

[
M
N

]
H2.

B. Robust Stability in Gap Metric

Let X and Y be two subspaces of a Hilbert space H and
let ΠX (ΠY , respectively) be the orthogonal projection on
X (Y , respectively). The gap between the two subspaces is
defined as

γ(X ,Y) = ‖ΠX −ΠY‖.

The gap between LTI systems P1 and P2 ∈ P is defined
on their graphs, i.e.,

δ(P1, P2) = γ(GP1 ,GP2).

Denote the corresponding gap ball as

B(P0, r) = {P : δ(P0, P ) ≤ r},



(a) A Single Two-Port Network

(b) One Stage Two-Port Connection

Fig. 3: Two-Port Networks: an Illustration

where r ≥ 0.
The standard closed-loop system in Fig. 1 is denoted as

[P,C], where P ∈ Pm×p represents the plant and C ∈
Pp×m the controller.

Under the mild condition that [P, C] is well-posed, i.e.,
I−CP has full normal rank, the well-known “Gang of Four”
transfer matrix [20] can be represented as

GoF(P,C) =

[
I
P

]
(I − CP )−1

[
I −C

]
.

The closed-loop system [P, C] is said to be stable if
GoF(P,C) is stable, or GoF(P,C) ∈ RH∞. If [P, C] is
stable, the stability margin is given as

bP,C = ‖GoF(P,C)‖−1∞ .

In light of the gap metric for describing system uncertainties,
an important robust stability result, namely, the “arcsin”
theorem, was obtained in [9].

Theorem 1. Assume the nominal system [P0, C0] is stable.
Then for some rp, rc ∈ [0, 1), [P,C] is stable for all P ∈
B(P0, rp) and C ∈ B(C0, rc) if and only if

arcsin rp + arcsin rc < arcsin bP0,C0
. (1)

Theorem 1 precisely quantifies the largest simultaneous
uncertainties in the plant and the controller that the feedback
system can tolerate while the stability is maintainted. The
stability margin bP0,C0

is the objective function in the
synthesis problem for an optimal robust controller.

III. A CASCADE TWO-PORT MODEL FOR NETWORKED
CONTROL SYSTEMS

A. Two-Port Networks as Communication Channels

The two-port network was firstly investigated in electrical
circuit theories. The network N in Fig. 3a has two external
ports1, with one port composed of v, w and the other of
u, y, which is the reason we call it a two-port network.
A two-port network N has various representations, from
which we choose the transmission type representation to

model the network as a communication channel. Define the
transmission matrix T satisfying that

T =

[
T11 T12
T21 T22

]
and

[
v
w

]
= T

[
u
y

]
. (2)

When the communication channel is perfect, i.e., commu-
nication without distortion or interference, the transmission
matrix is

T =

[
Ip 0
0 Im

]
.

If the bidirectional channel admits both distortions and
interferences, we can assume the transmission matrix to be

T = I + ∆ =

[
Ip + ∆÷ ∆−

∆+ Im + ∆×

]
,

where ∆ =

[
∆÷ ∆−
∆+ ∆×

]
∈ RH∞ with ‖∆‖∞ ≤ r and r ∈

[0, 1). The four-block matrix ∆ will be called the uncertainty
quartet.

B. Analysis of the Uncertainty Quartet

As shown in Fig. 3b, we connect one stage of the two-
port network to the plant and denote the transmission matrix
of N as T = I + ∆. It is shown in [15] that combining
Equation (2) with y = Pu, we can determine an equivalent
plant P e with input v and output w from the linear fractional
transformation (LFT). It follows that

P e = LFT
([
Ip + ∆÷ ∆−

∆+ Im + ∆×

]
, P

)
(3)

= [(Im + ∆×)P + ∆+][Ip + ∆÷ + ∆−P ]−1

and Fig. 4 is the diagram showing how the plant is af-
fected by the uncertainties. Looking through the diagram,
we assign each of the members in the uncertainty quartet a
detailed explanation [21], namely, the uncertainty of inverse
multiplication (÷), inverse addition (−), addition (+) and
multiplication (×). The diagonal terms ∆÷,∆× and the off-
diagonal terms ∆−,∆+ model two types of perturbations.
The diagonal terms represent multiplicative linear distortions
of the transmitted signals, mostly due to signal attenuations
in the fading channel. The off-diagonal represent additive
interference from the reverse signals, which occurs mostly
in bidirectional wireless channels and also can be caused by
malicious attacks.

In order to keep the system well-posed, we add a mild
condition on the channel uncertainty ∆, so that the transfer
matrix Ip + ∆÷ + ∆−P has full normal rank. One way to
achieve that is to assume ∆ to be strictly proper.

Remark 1. It is worth noting that describing an uncertain
system using an LFT is not new in robust control. Tradition-
ally, an uncertain system takes the form of LFT(G,∆), a
fixed LFT of an uncertain component ∆. Nevertheless, in our
study, an uncertain system takes the form of LFT(I+ ∆, P ),

1Something on the notation we hope to clarify. Note that N denotes
certain two-port network, N usually denotes a coprime factor of a transfer
function and N (·, ·) denotes certain neighborhood of systems.



++

++

++

++

-

Fig. 4: Plant with the Uncertainty Quartet

which is an uncertain LFT of a possibly known plant P . It
is the uncertainty quartet that brings in the main difference.

C. Graph Analysis on Cascade Two-Port NCSs

Although we know an equivalent plant can be derived
through LFT(I + ∆, P ), we introduce a more intuitive and
simple way to produce the same input-output relations of
equivalent plants or controllers by analysing their graphs.
As illustrated in Fig. 2, the plant P = NM−1 and controller
C = V U−1 communicate with each other through cascade
two-port networks. Considering the input and output of P ,
we can find all the elements in the graph of P as[

u
y

]
=

[
M
N

]
x,

for every x ∈ H2.
Consider the transmission type representation of the two-

port networks {Nk}lk=1. If the k-th stage of the network
admits an uncertainty ∆k ∈ RH∞, then the transmission
matrix is given as Tk = I + ∆k. Signals in Fig. 5 admit the
following relations:[
uk
yk

]
=

 k∏
j=1

Tk+1−j

[u
y

]
=

 k∏
j=1

(I + ∆k+1−j)

[u
y

]
which is equivalent to[
vk
wk

]
=

 l∏
j=k+1

Tj

[v
w

]
=

 l∏
j=k+1

(I + ∆j)
−1

[v
w

]
.

If we view P together with {N j}kj=1 as an equivalent
plant P e

k with uncertainties {∆j}kj=1, P e
k = NkM

−1
k can be

identified by its graph:

GP e
k

=

[
Mk

Nk

]
H2 =

 k∏
j=1

(I + ∆k+1−j)

GP . (4)

Similarly, if we view C together with {N j}lj=k+1 as
an equivalent controller Ce

k with uncertainties {∆j}lj=k+1,
Ce

k = VkU
−1
k can be identified by its inverse graph:

G′Ce
k

=

[
Vk
Uk

]
H2 =

 l∏
j=k+1

(I + ∆j)
−1

G′C . (5)

...

...

+

+

Fig. 5: Equivalent Plant and Controller

where the inverse graph G′C is defined as

G′C =

[
V
U

]
H2.

For convenience, we regard k = 0 as the situation where
P is isolated from two-port networks and k = l the situation
where C is isolated.

Since ∆k ∈ RH∞ and ‖∆k‖∞ < 1, we have I + ∆k

and (I + ∆k)−1 ∈ RH∞. Hence (Mk, Nk) and (Uk, Vk)
must be right coprime, respectively. As the systems are well-
posed here, Mk and Uk have full normal rank. Therefore, the
equivalent plants and controllers P e

k and Ce
k are well-defined

by their graphs.

D. Two-Port NCS: A Stability Criterion

The stability of the NCS is defined as follows:

Definition 1. See Fig. 5. The NCS is said to be stable
if we inject signals pk and qk ∈ H2 at the k-th stage
for each k = 0, 1, . . . , l, then the signals on all ports,
namely, u0, . . . , ul, y0, . . . , yl, v0, . . . , vl and w0, . . . , wl will
be energy-bounded, i.e., they belong to H2.

The following lemma simplifies the procedures to deter-
mine the stability of the two-port NCS.

Lemma 1. See Fig. 5. If we inject signals pk and qk ∈ H2

at the k-th stage for each k = 0, 1, . . . , l, the signals on
all ports are energy-bounded if and only if uk and wk are
energy-bounded, i.e., uk and wk ∈ H2.

Note that the system in Fig. 5 is a standard closed-loop
system with P e

k as plant, Ce
k as controller. Therefore, the

NCS is stable if and only if the equivalent closed-loop system
[P e

k , C
e
k] in Fig. 5 is stable given the excitation at the k-th

stage for k = 0, 1, . . . , l.

IV. ROBUST STABILITY FOR TWO-PORT NCSS

Although it seems very difficult to establish a concise
condition for the robust stability of the two-port NCS with
structured uncertainties from multiple sources, it turns out the
robust stability can be guaranteed by an “arcsin” inequality,
which is also shown to be necessary.



A. Main Theorem

In addition to the network uncertainties {∆k}lk=1, we
assume both the plant P and the controller C admit some
uncertainties described by the gap balls centered at a nominal
plant P0 and a nominal controller C0.

Theorem 2. Assume the nominal system [P0, C0] is stable.
For rp, rc, rk ∈ [0, 1), the NCS in Fig. 2 is robustly stable
for all P ∈ B(P0, rp), C ∈ B(C0, rc) and ∆k ∈ RH∞,
‖∆k‖∞ ≤ rk, k = 1, 2, . . . , l if and only if

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk < arcsin bP0,C0 . (6)

Remark 2. The plant/controller admits the uncertainties
measured by the gap, which can be extended to the ν-gap
and the pointwise gap with similar arguments. Furthermore,
with Theorem 2 in mind, the design of an optimal controller
for robust stabilization can be attributed to solving an H∞
problem with respect to the “Gang of Four” matrix.

B. Lemmas and Proofs

Before we proceed to the brief proof of Theorem 2,
we introduce more definitions and some useful lemmas on
characterizing the inclusive relations of different uncertainty
sets.

We already know the gap ball uncertainty is of great
importance to develop the concise robust stability condi-
tion (1). Next, we introduce two neighborhoods that are
equivalent to the gap ball but are expressed in a very
different way. Assume that the nominal system P0 admits
the following right coprime factorizations P0 = N0M

−1
0 and

that r ≥ 0. We define the following set to describe the system
uncertainties [22]:

Definition 2.

N (P0,r) =

{
P = NM−1 :

[
M
N

]
= (I + ∆)

[
M0

N0

]
,

M,N ∈ RH∞ are coprime,∆ ∈ RL∞, ‖∆‖∞ ≤ r
}
,

Ñ (P0,r) =

{
P = NM−1 :

[
M
N

]
= (I + ∆)−1

[
M0

N0

]
,

M,N ∈ RH∞ are coprime,∆ ∈ RL∞, ‖∆‖∞ ≤ r
}
.

From [22] we know N (P0, r) = Ñ (P0, r) and we use
N (P0, r) as the representative. The following lemma gives
the relationship between the above uncertain set and the gap
ball [22].

Lemma 2. For each r ≥ 0, it holds that

N (P, r) = B(P, r).

Remark 3. We can define two-port neighbourhoods on
the system, representing the forward transmission and the

backward transmission, as

NT (P0,r) =

{
P = NM−1 :

[
M
N

]
= (I + ∆)

[
M0

N0

]
,

M,N are coprime,∆ ∈ RH∞, ‖∆‖∞ ≤ r
}
,

ÑT (P0,r) =

{
P = NM−1 :

[
M
N

]
= (I + ∆)−1

[
M0

N0

]
,

M,N are coprime,∆ ∈ RH∞, ‖∆‖∞ ≤ r
}
,

where r ≥ 0. It is clear from Definition 2 that

NT (P0, r) ∪ ÑT (P0, r) ⊂ N (P0, r) = B(P0, r),

hence the topology induced by the two-port neighbourhood is
closely related to the graph topology induced by the gap. This
inclusion relation will be very helpful to show the sufficiency
of the robust stability condition (6).

Next based on the previously introduced lemmas, we
give the proof on the sufficiency of our main theorem. The
necessity is quite lengthy, involving constructions of a series
of transmission matrices in the two-port networks, hence we
only outline the procedures.

Proof. (of Theorem 2)

We first prove the sufficient part. Given

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk < arcsin bP0,C0
,

we need to prove the NCS is stable. As illustrated in Fig. 5,
we excite the network at the k-th stage, k = 0, 1, 2, . . . , l.
Denote the right coprime factorizations as P = NM−1 and
C = V U−1. Denote that[

Mk

Nk

]
=

 k∏
j=1

(I + ∆k+1−j)

[M
N

]
,

[
Vk
Uk

]
=

 l∏
j=k+1

(I + ∆j)
−1

[V
U

]
.

From the well-posedness of the systems, the equivalent
plants P e

k = NkM
−1
k are well-defined and so are the

controllers Ce
k = VkU

−1
k . We denote P e

0 = P and Ce
l = C.

Hence, from Remark 3, we know

P e
k ∈ NT (P e

k−1, rk) ⊂ B(P e
k−1, rk),

Ce
k ∈ ÑT (Ce

k+1, rk+1) ⊂ B(Ce
k+1, rk+1).

From [9, Proposition 1], we know arcsin δ(P1, P2) is a
metric, called the angular gap metric, on the space Pm×p.
By iteratively utilizing the triangular inequality of the angular
gap, we obtain that

arcsin δ(P e
k , P ) ≤

k∑
j=1

arcsin δ(P e
j , P

e
j−1) ≤

k∑
j=1

arcsin rj ,



arcsin δ(Ce
k, C) ≤

l∑
j=k+1

arcsin δ(Ce
j−1, C

e
j ) ≤

l∑
j=k+1

arcsin rj .

As we also have P ∈ B(P0, rp) and C ∈ B(C0, rc), the
triangular inequality indicates that

arcsin δ(P e
k , P0) ≤ arcsin rp +

k∑
j=1

arcsin rj ,

arcsin δ(Ce
k, C0) ≤ arcsin rc +

l∑
j=k+1

arcsin rj .

From Theorem 1 and noting

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk < arcsin bP0,C0
,

we obtain the equivalent closed-loop system [P e
k , C

e
k] in

Fig. 5 is stable for all k = 0, 1, 2, . . . , l. From Lemma 1, it
holds that the NCS in Fig. 2 is robustly stable. This finishes
the proof for sufficiency.

The necessary part is proved by contradiction. That is,
with the condition (6) violated, we try to construct some
P , C and {∆k}lk=1 such that the two-port NCS is unstable.
The existence of P and C simply follows from paper [9].
Concerning {∆k}lk=1, the key idea is on iteratively rotating
the“weakest” canonical angle between the graph of P and
C at some specific frequency and then interpolate a series of
rotation matrices at that frequency to find those transmission
matrices.

V. CONCLUSION AND FUTURE WORK

A two-port NCS model is proposed to study the feedback
control system with dynamic uncertainties. The uncertainties
in the plant and controller are measured by the gap metric,
while those in the communication channels are on the trans-
mission matrices of two-port connections. A perfect channel
is represented by an identity as its transmission matrix. When
distortions and interferences occur in the communication, the
identity matrix is perturbed by an additive dynamic uncer-
tainty ∆, whose block elements are called the uncertainty
quartet in our study. Furthermore, we give a necessary and
sufficient condition for the NCS to be robustly stable, which
is determined by an “arcsin” inequality. The sufficiency is
mainly derived from the triangular inequality of the angular
gap metric, which is the “arcsin” of the gap metric. And the
necessity is mainly attributed to the tightness of the triangular
inequality of the angular gap metric, rather than the gap.

A generalization of the model may work if we extend the
network uncertainties to the nonlinear case, motivated by the
practical channel conditions, equipments with quantizers and
attack patterns of potential enemies.
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