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Abstract: The paper investigates the positive semidefiniteness of signed Laplacians. It is noted
that a symmetric signed Laplacian defines a unique resistive electrical network, wherein the
negative weights correspond to negative resistances. As such, the positive semidefiniteness of
the signed Laplacians is equivalent to the passivity of the associated resistive networks. By
utilizing n-port circuit theory, we obtain several equivalent conditions for signed Laplacians to
be positive semidefinite with a simple zero eigenvalue. These conditions characterize a set of
negative weights that maintain the semidefiniteness of the Laplacian. The results are used to
analyze the small-disturbance angle stability of microgrids as an application.

1. INTRODUCTION

An undirected signed weighted graph refers to a group of
nodes linked via undirected signed weighted edges. Such a
graph is associated with a signed Laplacian matrix. It is
well known that when all the edge weights are positive, the
associated Laplacian is positive semi-definite. In addition,
the Laplacian has a simple zero eigenvalue if, and only if,
the underlying graph is connected, or equivalently, has a
spanning tree. In the presence of negative edge weights,
we are curious to find out the graph-theoretic meaning
for a signed Laplacian to be positive semidefinite with a
simple zero eigenvalue. Will this lead to a new dimension of
understanding of weighted graphs? These are the questions
explored in this paper.

Signed weighted graphs appear in many different appli-
cations. One strong motivation for this work comes from
the recent developments in distributed computation and
control among a group of interactive agents via local in-
teractions. See, for instance, Cortés et al. (2004); Lin et al.
(2007); Hu and Evans (2004); Krick et al. (2009); Dörfler
et al. (2013); Altafini (2013), just to name a few. In a
realistic network, negative edge weights may arise from
some faulty processes occurring in distributed computa-
tion or communication among agents. For example, sign
errors may be present in some communication channels.
If that is the case, the actual weights used in the updates
of distributed algorithms can be negative, yielding Lapla-
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cians with negative weights. Another possible occurrence
of Laplacians with negative weights comes from adversarial
attacks on a network. For example, in a continuous-time
linear consensus network (Ren and Beard, 2005), an ex-
ternal attacker may intentionally hack the communication
link between some pairs of neighboring agents by flipping
the signs of the values transmitted through the link, with
the purpose of preventing the agents from reaching a
consensus. In both cases above, negative weights appear
in the associated Laplacian matrices and the positive
semidefiniteness of the Laplacians plays a salient role in
the analysis.

Another motivation for this work comes from the study of
small-disturbance angle stability of microgrids. It has been
shown in Song et al. (2015) that the local stability of an
equilibrium point in the microgrid dynamics boils down to
the spectral properties of a signed Laplacian. The presence
of negative weights comes from the so-called critical lines
across which the phase angle difference is greater than π/2.

Apart from the engineering field, signed Laplacians also
appear in many other areas, for instance, neural networks
and social networks. One can refer to Bronski and Deville
(2014); Altafini (2013) for more elaborations. All in all,
there is ample motivation to study the properties of signed
Laplacians.

We examine in this paper the positive semidefiniteness of
signed Laplacians. Specifically, we are interested in charac-
terizing the conditions under which the signed Laplacians
are positive semidefinite with a simple zero eigenvalue.
This would be an interesting and relevant exploration
since it has been proven crucial in many different contexts,



e.g., the consensus dynamics under attacks (Khanafer and
Başar, 2016) and angle stability analysis of microgrids, etc.

In general, signed Laplacians may exhibit negative eigen-
values and/or multiple zero eigenvalues, even when the
underlying graphs are connected. In a recent paper, Ze-
lazo and Bürger (2014), signed Laplacians with only one
negative weight have been studied. It has been shown that
such a signed Laplacian is positive semidefinite if, and
only if, the effective resistance over the negatively weighted
edge is nonnegative. The result has been extended therein
to signed Laplacians with multiple negative weights, but
with the restriction that the negatively weighted edges are
isolated in different cycles in the underlying graphs. Later,
the same results were reestablished in Chen et al. (2016b)
using geometrical and passivity-based approaches, leading
to a significant simplification of the proof and more trans-
parent physical interpretations in terms of circuit theory.
Notwithstanding this, necessary and sufficient conditions
for general signed Laplacians with negative weights to be
positive semidefinite were lacking until recently, where we
have provided one such condition in Chen et al. (2016a).

The contribution of this paper is multifold. We provide
a series of graph-theoretical conditions under which a
signed Laplacian, without any restrictions on the nega-
tively weighted edges in the underlying graph, is positive
semidefinite and has a simple zero eigenvalue. These condi-
tions also characterize a set of negative weights that main-
tain the semidefiniteness of the Laplacian. The conditions
are given in terms of certain effective resistance matrices
and can be physically interpreted via the passivity of
resistive multiport networks.

We note that the problem considered here is also related
to the literature on the problem of bounding the number
of negative and zero eigenvalues of signed Laplacians
(Bronski and Deville, 2014).

Notation: We use 1 to denote the vector with all entries
equal to 1, while the size of the vector is to be understood
from the context. Denote by ui the vector with the ith
entry equal to 1 and other entries equal to 0. We define
uij = ui−uj . The transpose of a matrix A is denoted by A′.
The corank of A is denoted by corank(A). The spectrum
and spectral radius of a square matrix A are denoted by
σ(A) and ρ(A), respectively. For a symmetric matrix S,
we write S ≥ 0 if S is positive semidefinite, and S > 0 if
S is positive definite.

The rest of the paper is organized as follows. In Section 2,
signed Laplacians are introduced. Some preliminaries on
effective resistance matrices are given in Section 3. The
main results of the paper are presented in Section 4. An
application in microgrids is studied in Section 5. The paper
ends with some concluding remarks in Section 6.

2. SIGNED LAPLACIANS

Consider an undirected graph G = (V, E) which consists
of a set of nodes V = {1, 2, . . . , n} and a set of edges
E = {e1, e2, . . . , em}. We use (i, j) to denote the edge
connecting node i and node j, and associate with each
edge (i, j) ∈ E a nonzero real-valued weight aij that can be
either positive or negative. If there is no edge connecting
node i and node j, aij is understood to be zero. Such

a graph is called a signed weighted graph. For brevity,
hereinafter the signed weighted graphs are also referred
to as signed graphs.

Denote by E+ (E−, respectively) the subset of E con-
taining all edges with positive weights (negative weights,
respectively). Denote by G+ = (V, E+) (G− = (V, E−),
respectively) the spanning subgraph 1 of G whose edge
set is E+ (E−, respectively). A spanning tree T of an
undirected graph G is a spanning subgraph that is a tree. A
spanning tree exists if, and only if, the underlying graph is
connected. If the graph is not connected, a spanning forest
F is considered instead, which is a spanning subgraph
containing a spanning tree in each connected component
of the graph. A spanning tree can be regarded as a special
case of a spanning forest. Therefore, hereinafter we shall
use F to represent a spanning tree or a spanning forest of
a graph G, depending on whether the graph is connected
or not.

For a signed graph, the associated signed Laplacian matrix
L=[lij ]∈Rn×n is defined by

lij =

{
−aij , i 6= j,∑n

j=1,j 6=i aij , i = j,

with aij = aji, i 6= j. Clearly, L is symmetric, and thus
has real eigenvalues. Also, L has a zero eigenvalue with a
corresponding eigenvector being 1 ∈ Rn.

When all the edges are positively weighted, L reduces to
the conventional Laplacian matrix, to which a substantial
literature is dedicated (Merris, 1994). However, when some
edges are negatively weighted, the corresponding signed
Laplacian exhibits quite a few significant differences from
the conventional one. Firstly, L is no longer an M-matrix 2

when negative weights are present. Consequently, many
well-studied properties of M-matrices do not hold. Sec-
ondly, L is not necessarily a positive semidefinite matrix
as opposed to the conventional Laplacians. Thirdly, while
the multiplicity of the zero eigenvalue of a conventional
Laplacian is equal to the number of connected components
in the underlying graph, this is in general not true for
a signed Laplacian. All these differences necessitate the
development of a theory for signed Laplacian matrices.

Accordingly, we study in this paper the spectral properties
of signed Laplacians with both positive and negative
weights, and specifically, positive semidefiniteness. It is
well known that a conventional Laplacian matrix is always
positive semidefinite, and it has a simple zero eigenvalue
if, and only if, the underlying graph is connected (Fiedler,
1973). This is no longer the case for signed Laplacians.
The following simple example demonstrates that a signed
Laplacian may have negative eigenvalues and multiple zero
eigenvalues even when the graph is connected. Consider a
complete graph with three nodes. Let a12 = −1, a13 = 2,
and a23 = 2. Then, it can be verified that L has a
zero eigenvalue of multiplicity two (and the third one is
positive). Now let a12 = −2, and a13, a23 as before; then
L has one negative, one zero, and one positive eigenvalue.

1 A spanning subgraph of G is a graph which contains the same set
of nodes as G and whose edge set is a subset of that of G.
2 A square matrix M is said to be an M-matrix if it can be expressed
as M = sI − B, where I is the identity matrix, B is nonnegative,
and s ≥ ρ(B).



We wish to understand under what conditions a signed
Laplacian matrix is positive semidefinite and has a simple
zero eigenvalue. As will be shown later, a signed Laplacian
matrix defines a resistive multiport network, where the
negative weights correspond to negative resistances. In this
context, the objective is also to explore when a multiport
network with active components remains passive.

Before proceeding, let us introduce a useful factorization.
Let W =diag{w1, w2, . . . , wm} denote an m×m diagonal
matrix with diagonal elements given by the edge weights,
i.e.,

wk = aij , for (i, j) = ek.

Also, assign an (arbitrary) orientation to each edge of the
graph, i.e., for each edge ek ∈ E , denote one endpoint
as the head and the other as the tail. Then, the oriented
incidence matrix D = [dik] ∈ Rn×m is defined as

dik =


1, if i is the head of ek,

−1, if i is the tail of ek,

0, otherwise.

An important property of the incidence matrix is D′1 = 0.
Now, with the weight matrix W and the incidence matrix
D, the signed Laplacian matrix L can be factorized as

L = DWD′. (1)

It is worth noting that while the incidence matrix depends
on the choice orientations, the signed Laplacian matrix L
does not. To see this, suppose the orientation of edge ek
is changed and the orientations of other edges remain the
same. Denote the resulting incidence matrix by D̃. Then,
D̃ = DS, where S is a diagonal matrix whose kth diagonal
entry is −1 and other diagonal entries are 1. Therefore,
D̃WD̃′ = DSWSD′ = DWS2D′ = DWD′.

3. PRELIMINARIES ON EFFECTIVE RESISTANCE
MATRIX

Consider an undirected graph G = (V, E). Associate
with each edge a resistor of (possibly negative) resistance
value rk = 1/wk, where wk is the weight on edge ek.
In other words, the weight wk is the conductance of the
corresponding resistor.

Let c ∈ Rn be a vector whose entries denote the amount
of current injected into each node by external independent
sources. Assume that the sum of the entries of c is equal
to zero, i.e., c′1 = 0, meaning that there is no current
accumulation in the electrical network. Denote by v ∈ Rn

and i ∈ Rm the vector of voltages at all nodes and the
vector of currents through all edges, respectively. Then,
Kirchhoff’s current law asserts that the difference between
the outgoing current and the incoming current through
the edges adjacent to a given node equals to the external
current injection at that node, i.e., Di = c. On the other
hand, Ohm’s law asserts that the current across each edge
is given by the voltage difference divided by the resistance,
i.e., WD′v = i. Combining these two equalities, we have

DWD′v = Lv = c.

When the Laplacian L has a simple zero eigenvalue, we
can solve the above equation to yield

v = L†c + α1, (2)

where L† is the Moore-Penrose pseudoinverse of L and
α is an arbitrary real number. The electric power of the
network is given by v′c. The electrical network is said to
be passive (Desoer and Kuh, 1969) if v′c ≥ 0, and strictly
passive if v′c > 0.

Let c = uij . This means that a unit of current is injected
into node i and extracted from node j. In light of the
voltage formula (2), the voltage difference between these
two nodes is given by u′ijL

†uij . This quantity is called the
effective resistance across the pair (i, j), and we denote it
by

reff(i, j) = u′ijL
†uij .

When all the edge weights are positive, it has been shown
that the effective resistance serves as a distance function
in the node set of a weighted graph (Klein and Randić,
1993).

In many cases, it is also of interest to consider the voltage
difference across a node pair (i, j) when a unit of current is
injected into and extracted from another node pair (k, l).
Such a quantity is called the mutual effective resistance
between the two node pairs:

rmut((i, j), (k, l)) = u′ijL
†ukl.

Since L† is symmetric, we have

rmut((i, j), (k, l)) = rmut((k, l), (i, j)).

In the context of multiport circuit theory (Anderson and
Vongpanitlerd, 1973), every pair of nodes in the network
can be regarded as one port. Consider an m-port network
whose ports correspond to the adjacent node pairs. Then,
both the effective resistance across the ports and mutual
effective resistance between different ports can be captured
by an effective resistance matrix Γ = [γkl] ∈ Rm×m given
by

Γ = D′L†D.

Clearly, Γ is a symmetric matrix. The diagonal entries of Γ
correspond to the effective resistances and the off-diagonal
entries correspond to the mutual effective resistances.

4. MAIN RESULTS

In this section, a series of results revealing the connection
between the spectral properties of the signed Laplacians
and the corresponding graph-theoretical interpretations are
given. The proofs are left out because of page limitations,
and can be found in the longer version of the paper avail-
able from the authors.

Consider a signed graph G equipped with the signed Lapla-
cian L. The graph G can be expressed as G = F∪C, where
F = (V, EF) denotes a spanning tree (spanning forest,
respectively) of G when G is connected (disconnected,
respectively), and C denotes another spanning subgraph
of G containing the remaining edges, i.e., C = (V, E\EF).
With a proper labeling of the edges, the incidence matrix
D can be rewritten as D = [DF DC]. Then, the effective
resistance matrix Γ admits the form

Γ = D′L†D =

[
D′FL

†DF D′FL
†DC

D′CL
†DF D

′
CL
†DC

]
.

Let ΓF = D′FL
†DF. The following theorem constitutes the

first step in our series of results.



Theorem 1. A signed Laplacian L is positive semidefinite
and of corank(L) = 1 if, and only if, the underlying signed
graph G has a spanning tree F, and ΓF > 0.

Note that corank(L) = 1 is equivalent to L has a simple
zero eigenvalue. Theorem 1 holds for an arbitrary choice
of spanning tree, which may or may not contain negatively
weighted edges. For a chosen spanning tree F, one can view
the resistive network associated with G as an (n− 1)-port
network whose ports correspond to the edges of F. The
resistance matrix of such an (n−1)-port network is exactly
given by ΓF. By the multiport circuit theory (Anderson
and Vongpanitlerd, 1973), ΓF > 0 means that the (n− 1)-
port network is strictly passive. In this regard, Theorem 1
can be physically interpreted as follows:

An n × n signed Laplacian L is positive semidefinite and
has a simple zero eigenvalue if, and only if, the underlying
signed graph G has a spanning tree and the corresponding
(n− 1)-port network is strictly passive.

Remark 1. When all the weights are positive, the inequal-
ity ΓF > 0 holds automatically if a spanning tree F exists.
As such, in that case, Theorem 1 reduces to the well-known
result on classical Laplacian matrices.

In many applications, it may well happen that the number
of negatively weighted edges is relatively small compared
to the size of the graph. Hence, examining the resistance
matrix of an (n−1)-port network may contain much re-
dundancy. This has been evidenced in Zelazo and Bürger
(2014) which revealed that when there is one single nega-
tively weighted edge (i, j), the signed Laplacian is positive
semidefinite and has corank 1 if, and only if, the graph
is connected and reff(i, j) > 0, i.e., only a 1-port network
needs to be examined. In the sequel, we will show how to
perform such a reduction of redundancy and, thus, lower
the computational complexity in the general case.

Let G+ = (V, E+) and G− = (V, E−) be as defined before.
We now express the signed graph G as the union of three
subgraphs:

G = F− ∪ C− ∪G+,

where F− = (V, EF−) is a spanning forest of G− and C− is
a spanning subgraph of G− containing the remaining edges
of G−. With a proper labeling of the edges, the incidence
matrix D can be rewritten into D = [DF−DC−DG+ ]. Then
the effective resistance matrix Γ admits the form

Γ = D′L†D =

D′F−
L†DF− D′F−

L†DC− D′F−
L†DG+

D′C−
L†DF− D′C−

L†DC− D′C−
L†DG+

D′G+
L†DF− D′G+

L†DC− D′G+
L†DG+

 .
Let ΓF− = D′F−

L†DF− . Since F− is a spanning forest of

G−, it follows that DF− has full column rank (see Theorem
2.5 in Grossman et al. (1995)).

Theorem 2. (Chen et al. (2016a)). A signed Laplacian L
is positive semidefinite and of corank(L) = 1 if, and only if,
the underlying signed graph G is connected, and ΓF− > 0.

It should be clear that the choice of a spanning forest F−
in G− is not unique. Nevertheless, Theorem 2 holds for
any choice of F−.

Suppose F− contains m1 edges. Then, one can view the
resistive network associated with G as an m1-port net-
work whose ports correspond to the edges of F−. The

resistance matrix of such an m1-port network is given
by ΓF− . Clearly, m1 ≤ n − 1. As a matter of fact, in
many applications, m1 may be much smaller than n − 1.
Hence, Theorem 2 reduces the redundancy in checking the
passivity of an (n− 1)-port network as in Theorem 1.

From Theorem 2, the following corollary can be deduced,
whose proof can be found in Chen et al. (2016a).

Corrollary 1. If G does not have any cycle containing two
negatively weighted edges, then L is positive semidefinite
and of corank(L) = 1 if, and only if, G is connected, and
reff(i, j) > 0 for all (i, j) ∈ E−.

Note that in Theorem 2, the interaction between negative
weights and positive weights is reflected only implicitly in
the positive definiteness of ΓF− . Then, a further question
arises: Is it possible to come up with a condition that
explicitly separates the impact of the negative and positive
weights? Having such a condition is important, especially
in applications concerning the fragility of networks under
perturbations.

It turns out the answer to the above question is in the
affirmative. The key is to exploit the parallel connection
of multiport networks and the induced matrix operation.
Specifically, one can view the m1-port network with ports
corresponding to the edges of F− as a parallel connection
of an m1-port network with only all positive resistances
and another m1-port network with only all negative resis-
tances. Denote the signed Laplacians corresponding to G+

and G− by L+ and L−, respectively. Then, the resistance
matrices of the m1-port network with positive resistances
and the m1-port network with negative resistances are
given by

Γ+
F−

= D′F−
L†+DF− ,

Γ−F−
= D′F−

L†−DF− ,

respectively.

The following theorem reveals explicitly how the negative
and positive weights influence the positive semidefiniteness
of L.

Theorem 3. A signed Laplacian L is positive semidefinite
and of corank(L) = 1 if, and only if, the underlying signed
graph G is connected, and Γ+

F−
< −Γ−F−

.

Applying Theorem 3 to the special case when G has no
cycles containing two negatively weighted edges yields the
following corollary.

Corrollary 2. If G does not have any cycle containing two
negatively weighted edges, then L is positive semidefinite
and of corank(L) = 1 if, and only if, G is connected,
and r+

eff(i, j)< 1/|aij | for all (i, j) ∈ E−, where r+
eff(i, j) =

u′ijL
†
+uij .

Note that r+
eff(i, j) is the effective resistance between nodes

i and j over the subgraph G+, where (i, j) ∈ E−. This
corollary is consistent with the understandings in (Zelazo
and Bürger, 2014, Theorem III.3).

Remark 2. In many applications, G+ often represents the
original physical graph which may suffer perturbations via
negatively weighted edges. In this regard, Γ+

F−
reflects the



fragility of G+ under such perturbations. The smaller Γ+
F−

is, the less fragile G+ would be.

5. APPLICATION TO ANGLE STABILITY
ANALYSIS IN MICROGRIDS

A microgrid is a low-voltage or medium-voltage power
network that provides electricity to a local area. It usually
consists of distributed generators, loads, energy storage,
and control devices. Small disturbance angle stability
is one of the central issues facing microgrids. In this
section, we sketch how small-disturbance angle stability is
connected to spectral properties of a signed Laplacian and,
thus, the results presented in this paper can be applied.
For more detailed discussions on the angle stability of
microgrids, one can refer to Ainsworth and Grijalva (2013);
Song et al. (2015).

Consider an inverter-based microgrid whose topology is
described by an undirected graph G = (V, E) consisting of
n nodes and m edges, in which each node corresponds to
a bus and each edge corresponds to a transmission line.
Denote by Yij = Yji the admittance of the transmission
line (i, j) ∈ E . We use V1 to represent the set of buses with
inverter-based generators or frequency dependent loads
and use V2 to represent the set of buses with only frequency
independent loads. Denote the voltage magnitude and
phase angle of bus i by Vi and θi, respectively. Then, with
the aid of a singular perturbation parameter ε > 0, the
dynamics of phase angle θi at bus i can be described as

PRi =PLi+(KRi+KLi)θ̇i+
∑

(i,j)∈E

ViVjYij sin(θi − θj), i∈V1,

0=PLi+ εθ̇i+
∑

(i,j)∈E

ViVjYij sin(θi − θj), i∈V2,

where PRi and PLi stand for the nominal active power
generation and nominal load at bus i, respectively, and
KRi and KLi stand for the reciprocal of frequency droop
gain of the generator and the frequency dependence coef-
ficient of the load at bus i, respectively. For simplicity of
analysis, we assume that the voltage magnitude at each
bus is a constant (not necessarily homogenous).

We introduce additional notation so that the above set of
dynamic equations can be rewritten in a compact matrix
form. Let θ = [θi] ∈ Rn be the vector of bus phase angles,
and let K = diag{Ki} ∈ Rn×n be the bus total damping
coefficients matrix, where

Ki =

{
KRi +KLi, i ∈ V1,

ε, i ∈ V2.

It is required that K > 0. Denote by P = [Pi] ∈ Rn the
vector of bus injected power, where

Pi =

{
PRi − PLi, i ∈ V1,

−PLi, i ∈ V2.

Finally, the vector of active power flows through all the
transmission lines is denoted by

Pline(D′θ) = [ViVjYij sin(θi − θj)] ∈ Rm, ∀(i, j) ∈ E ,
where Pline(D′θ) means Pline is a function of D′θ and D is
the oriented incidence matrix of G.

Now, the above phase angle dynamics can be rewritten in
a compact matrix form:

Kθ̇ = P −DPline(D′θ).

With a state variable transformation

θ̃i = θi − θc, θc =
1′Kθ

1′K1
,

where θc is the center-of-damping angle, the dynamics can
be further rewritten as

K
˙̃
θ = P − 1′P

1′K1
K1−DPline(D′θ̃). (3)

The advantage of such a state transformation is that
˙̃
θ = 0

at the synchronous states, and thus the equilibrium points
of system (3) are constant. Denote by θ̃0 an equilibrium
point of system (3).

We wish to study the small-disturbance stability of the
equilibrium point θ̃0. To this end, we linearize the system
(3) around the equilibrium point θ̃0, yielding

∆
˙̃
θ = −K−1DW (θ̃0)D′∆θ̃ = J(θ̃0)∆θ̃,

where

W (θ̃0) =
∂Pline(D′θ̃0)

∂(D′θ̃0)
= diag{ViVjYij cos(θ̃0

i − θ̃0
j )},

and
J(θ̃0) = −K−1DW (θ̃0)D′

is the Jacobian matrix.

The small-disturbance stability of θ̃0 is determined by the
spectrum of J(θ̃0). Notice that J(θ̃0)1 = 0, indicating that

J(θ̃0) has a zero eigenvalue with a corresponding eigenvec-
tor 1. In other words, this zero eigenvalue corresponds to
the synchronous manifold k1, k ∈ R, and, thus, does not
affect the stability of θ̃0. To be more specific, for a given
equilibrium point θ̃0, θ̃0 +k1 is the same equilibrium point
as θ̃0 since all the angle differences across the transmission
lines at θ̃0 are identical to those at θ̃0 + k1. Bearing this
in mind, one can claim that θ̃0 is small-disturbance stable
if, and only if, J(θ̃0) has all the eigenvalues lying in the
open left half plane except a simple zero eigenvalue.

We proceed to analyze the spectral properties of J(θ̃0). In
view of (1), the Jacobian matrix can be rewritten as

J(θ̃0) = −KL(θ̃0),

where
L(θ̃0) = DW (θ̃0)D′.

In practice, there may well exist some critical lines across
which the angle differences are greater than π/2. If that is

the case, the entries of W (θ̃0) corresponding to the critical

lines are negative and L(θ̃0) is a signed Laplacian. Since

K > 0 and σ(−KL(θ̃0)) = σ(−K 1
2L(θ̃0)K

1
2 ), it follows

that the eigenvalues of J(θ̃0) are all real. In addition, by

Sylvester’s law of inertia, one can verify that J(θ̃0) has
exactly the same number of positive, negative, and zero
eigenvalues as −L(θ̃0). This, combined with our earlier

understanding, indicates that the equilibrium point θ̃0 is
small-disturbance stable if, and only if, L(θ̃0) is positive
semidefinite and has a simple zero eigenvalue.

Such an equivalence between small-disturbance stability
and semidefiniteness of signed Laplacians has been shown
in Song et al. (2015). Therein the authors presented
a graph-theoretical characterization of the critical lines



maintaining small-disturbance stability under the assump-
tion that L(θ̃0) has a simple zero eigenvalue. In contrast,
we remove this assumption and explicitly address the mul-
tiplicity of zero eigenvalues as part of the problem formula-
tion. By applying the results in Section 4, three equivalent
graph-theoretical characterizations for small disturbance
stability are obtained via certain effective resistance ma-
trices.

6. CONCLUSION

In this paper, we have explored the connection between
the spectral properties of a signed Laplacian and the cor-
responding graph-theoretical meanings. Three equivalent
conditions for a signed Laplacian to be positive semidefi-
nite with a simple zero eigenvalue have been established.
These graph-theoretical conditions characterize the set
of negative weights that maintain the semidefiniteness of
the Laplacian via the so-called effective resistance matrix.
These conditions also characterize when a resistive mul-
tiport network with active components can still remain
passive. The results in this paper significantly generalize
the existing ones in Zelazo and Bürger (2014) and Chen
et al. (2016b), and extend those in Chen et al. (2016a).

Our future work aims at extending the results in this paper
to directed signed graphs. Such an extension, however,
appears to be challenging. While signed Laplacian matri-
ces have been introduced for directed graphs as well in
the literature (Young et al., 2016), how to suitably define
effective resistances and physically interpret them in terms
of electrical circuits remains to be investigated.
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