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Abstract— Recently, signed weighted graphs have appeared
in broad applications, ranging from social networks to bio-
logical networks, from distributed control systems to electric
power systems. This paper studies the spectral properties of
the signed Laplacians associated with undirected signed graphs.
We first revisit and provide a new dimension of understanding
on the positive semidefiniteness of signed Laplacians via n-port
network theory. We then go beyond positive semidefiniteness
and characterize the inertia of a signed Laplacian via the notion
of the conductance matrix.

I. INTRODUCTION

A signed weighted graph refers to a group of nodes linked
through signed weighted edges. Such signed weighted graphs
arise in many applications, ranging from social networks [1]–
[4] to biological networks [5], [6], from distributed control
and computation [7]–[13] to electric grid [14]. For example,
in distributed control and optimization, negative edge weights
may come from faulty communication processes among the
agents or adversarial attacks on the network. For another
example, in the study of small-disturbance angle stability of
power systems [14], negative edge weights may occur due to
the critical transmission lines across which the phase angle
differences are greater than 90 degrees.

Studying dynamics over a signed weighted graph often re-
quires the analysis of an associated signed Laplacian. In this
paper, we focus on the undirected signed weighted graphs for
which the associated signed Laplacians are real symmetric
matrices. Below is a brief review of some pertinent works
on symmetric signed Laplacians.

A first issue frequently discussed in the literature is the
semidefiniteness of signed Laplacians. Exploring conditions
under which the signed Laplacians are positive semidefinite
is of great importance to many applications. For instance,
positive semidefiniteness of a signed Laplacian is crucial for
the convergence of a linear consensus process in the presence
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of negative weights. In [8], signed Laplacians with only one
negative weight were studied. It was shown that such a signed
Laplacian is positive semidefinite if, and only if, the effective
resistance over the negatively weighted edge is nonnegative.
The result was extended therein to signed Laplacians with
multiple negative weights under the restriction that different
negatively weighted edges cannot be contained in the same
cycle. The same results were then reestablished in [9] using
geometrical and passivity-based approaches. Recently, the
work in [15] extended the study to general signed Laplacians
containing multiple negative weights with no restrictions on
the positions of the negatively weighted edges.

When a signed Laplacian is not positive semidefinite, its
inertia is of more interest. In [14], the authors connected the
type of unstable equilibrium points in power systems with
the inertia of certain signed Laplacians. In [6], the authors
discussed how the inertia of a signed Laplacian varies as the
signed weights vary in magnitude. In [10], the influence of
the structure of signed graphs on the inertia of the associated
signed Laplacians was investigated.

Motivated by the above, we study in this paper the spectral
properties of signed Laplacians for undirected graphs. We
first obtain a necessary and sufficient condition of low com-
plexity under which a signed Laplacian, with no restrictions
on the negatively weighted edges, is positive semidefinite
and has a simple zero eigenvalue. We then provide a charac-
terization of the inertia of a signed Laplacian via the notion
of the conductance matrix. The main tool we utilize is the
n-port network in circuit theory.

The rest of the paper is organized as follows. The signed
Laplacians and associated resistive networks are introduced
in Section II. Some preliminary knowledge on n-port net-
work theory is given in Section III. Positive semidefiniteness
of signed Laplacians is studied in Section IV. The inertia of
signed Laplacians is characterized in Section V. Finally, some
concluding remarks follow in Section VI.

Notation: Denote by 1 a vector with all elements being 1,
where the dimension is to be understood from the context.
Given a real symmetric matrix S, we write S ≥ 0 if S is
positive semidefinite, and S > 0 if S is positive definite.
Denote the inertia of a real symmetric matrix S by π(S) =
{π−(S), π0(S), π+(S)}, where π−(S), π0(S), and π+(S)
are respectively the numbers of negative, zero, and positive
eigenvalues with multiplicity counted. For a real symmetric

matrix S partitioned as S =

[
S11 S12

S21 S22

]
, denote by S/22 =

S11−S12S
†
22S21 the (generalized) Schur complement of S22

in S, where S†22 means the Moore-Penrose pseudoinverse of
S22. Similarly, S/11 = S22 − S21S

†
11S12.



II. SIGNED LAPLACIANS AND RESISTIVE NETWORKS

Consider an undirected graph G= (V, E) which consists
of a set of nodes V = {1, 2, . . . , n} and a set of edges E =
{e1, e2, . . . , em}. We use (i, j) to denote the edge connecting
node i and node j, and associate with each edge (i, j) ∈ E a
nonzero real-valued weight aij that can be either positive or
negative. If there is no edge connecting node i and node j,
aij is understood to be zero. Such a graph is called a signed
weighted graph. For brevity, the signed weighted graphs are
also referred to as signed graphs in this paper.

An undirected graph G=(V, E) has a spanning tree T, i.e.,
a spanning subgraph1 which itself is a tree, if and only if G is
connected. For a disconnected graph, a spanning forest F is
considered instead, which is a spanning subgraph containing
a spanning tree in each connected component of the graph. A
spanning tree can be regarded as a special case of a spanning
forest. Therefore, hereinafter we shall use F to represent a
spanning tree or a spanning forest, depending on whether the
underlying graph G is connected or not.

For a signed graph, the associated signed Laplacian matrix
L=[lij ]∈Rn×n is defined by

lij =

{
−aij , i 6= j,∑n

j=1,j 6=i aij , i = j.

At first sight, the way a signed Laplacian matrix is defined
looks no different from the conventional one, except that the
conventional Laplacians only have positive weights. Indeed,
some properties known for the conventional Laplacian matri-
ces remain in the presence of negative weights. For instance,
a signed Laplacian L is clearly a symmetric matrix, and thus
has real eigenvalues. Also, L has a zero eigenvalue with a
corresponding eigenvector being 1 ∈ Rn.

However, due to the presence of negative weights, signed
Laplacians exhibit some fundamental differences from the
conventional Laplacians. First, a signed Laplacian may not be
positive semidefinite as opposed to the conventional Lapla-
cian. Second, while the multiplicity of zero eigenvalue of a
conventional Laplacian is equal to the number of connected
components in the underlying graph, this is in general not
true for a signed Laplacian.

Motivated by the aforementioned similarities and differ-
ences, we wish to address two questions regarding the signed
Laplacian L:
(1) Is it possible to characterize the set of negative weights

with which the signed Laplacian is still positive semidef-
inite and has a simple zero eigenvalue?

(2) Is there a simple way of low complexity to characterize
the inertia of a signed Laplacian?

The connection between a signed Laplacian and an asso-
ciated resistive network plays an important role in answering
the above questions.

Consider a connected signed graph G. One can associate
with each edge a resistor of (possibly negative) resistance

1A spanning subgraph of G is a graph which contains the same set of
nodes as G and whose edge set is a subset of that of G.

rk = 1/wk, where wk represents the weight on edge ek.
While such an association with resistive networks is com-
pletely natural, it gives the signed Laplacian L an important
physical interpreation, i.e., L captures the linear relationship
between the vector of voltage potential at each node and
the vector of current flow into each node. To be specific,
let c ∈ Rn be a vector whose entries denote the amount
of current injected to each node by external independent
sources. Assume that the sum of the entries of c is zero,
i.e., c′1 = 0, meaning that there is no current accumulation
in the electrical network. Denote by u ∈ Rn the resulting
voltage potential at the nodes. Then, c and u are related via
the current balance equation

c = Lu.

This relation can be readily verified by applying Ohm’s law
and Kirchhoff’s current law; see [16] for details. From circuit
theory, a resistive network is passive if u′c ≥ 0, and strictly
passive if u′c > 0 for all c.

Before proceeding, we introduce a useful factorization of
L. Denote the weight matrix by W =diag{w1, w2, . . . , wm},
where wk = aij , for (i, j) = ek. Also, assign an (arbitrary)
orientation to each edge ek ∈ E . Then, the oriented incidence
matrix D = [dik] ∈ Rn×m is defined as:

dik =


1, if i is the head of ek,
−1, if i is the tail of ek,
0, otherwise.

A signed Laplacian L admits the factorization L = DWD′.

III. PRELIMINARIES

Some preliminary results on n-port (multiport) networks
are given below. See [17] and references therein for details.

As depicted in Fig. 1, an n-port network is an electrical
network with its external terminals being grouped into n
pairs such that for every pair of terminals, the current flowing
into one terminal is equal to the current flowing out of
the other. Such pairs of terminals are called ports of the
network. Note that the 2n external terminals are counted
with multiplicity, i.e., two distinct ports may share a common
terminal. The external behavior of an n-port network is
completely determined by port voltages v1,v2, . . . ,vn, and
port currents i1, i2, . . . , in. Let v =

[
v1 v2 . . . vn

]′
and i =

[
i1 i2 . . . in

]′
.

Port 1 Port 2 Port 3 Port 𝑛𝑛

+ −𝑣𝑣1 + −𝑣𝑣2 + −𝑣𝑣3 + −𝑣𝑣𝑛𝑛
⋯𝑖𝑖1 𝑖𝑖𝑛𝑛𝑖𝑖3𝑖𝑖2

Fig. 1. An n-port network

Now consider an n-port resistive network containing both
positive and negative resistances. Such an n-port network can
be characterized either by expressing port voltages in terms



of port currents as in v = Zi, or by expressing port currents
in terms of port voltages as in i = Y v. The two matrices
Z and Y are symmetric and are called resistance matrix and
conductance matrix of the n-port network, respectively. Each
diagonal element of matrix Z (Y , respectively) represents the
resistance (conductance, respectively) over a corresponding
port, while each off-diagonal element of Z (Y , respectively)
represents the mutual resistance (mutual conductance, re-
spectively) between two ports. An n-port resistive network is
strictly passive if and only if v′i > 0 for all nonzero i ∈ Rn.
Therefore, both resistance matrix and conductance matrix of
a strictly passive n-port network are positive definite. When
both Z and Y are finite and nonsingular, we have Z = Y −1.

Consider an n-port network A. Let C be an (n−r)-port
network obtained by shorting the first r ports of network A.
We partition the resistance matrix of network A into the form

Za =

[
Z11 Z12

Z21 Z22

]
, where Z11 ∈ Rr×r. Then, the resistance

matrix of C is given by Zc = Z22 − Z21Z
†
11Z12, which

is simply the Schur complement applied to the resistance
matrix. Similarly, we can partition the conductance matrix

of A into the form Y a =

[
Y11 Y12
Y21 Y22

]
, where Y11 ∈ Rr×r.

Then, the conductance matrix of C is given by Y c = Y22.
Now consider two n-port networks A and B. Let C be an

n-port network obtained by a parallel connection of A and
B. Then, Zc = Za(Za + Zb)†Zb and Y c = Y a + Y b.

IV. SEMIDEFINITENESS OF SIGNED LAPALCIANS

The resistive network associated with a connected signed
graph G of n nodes can be regarded as an (n− 1)-port net-
work, where the ports correspond to the edges of a spanning
tree F. It is easy to see that L is positive semidefinite with a
simple zero eigenvalue if, and only if, such an (n− 1)-port
network is strictly passive. However, considering n−1 ports
may contain much redundancy, especially when the number
of negatively weighted edges is small. How can we eliminate
the redundancy? Is it possible to consider only those ports
corresponding to the negatively weighted edges?

To solve this riddle, denote by G+ and G− the spanning
subgraph of G with only all positively weighted edges and
the spanning subgraph of G with only all negatively weighted
edges, respectively. We express G as G = F− ∪ C− ∪ G+,
where F− is a spanning forest of G−, and C− is a spanning
subgraph of G− containing the remaining edges in G−. With
a proper re-labeling of the edges, the incidence matrix D can
be rewritten as D =

[
DF− DC− DG+

]
. Suppose that G− has

m− edges and F− has m1 edges.
If we only care about the external behavior of the resistive

network at those ports corresponding to F−, we have an m1-
port network at hand. In many real applications, it is often
the case that m1 is much smaller than n− 1. The resistance
matrix and conductance matrix of this m1-port network are

given by ZF− = D′F−
L†DF− and YF− =

(
D′F−

L†DF−

)†
,

respectively [18]. This m1-port network is strictly passive if,
and only if, ZF− > 0, or equivalently, YF− > 0. Then, the

following question arises: Does the strict passivity of such
an m1-port network imply semidefiniteness of L?

The answer is in the affirmative. See the following theorem
which has been stated and proved in the authors’ earlier
work [15]. Here, we give an alternative proof which is more
informative and has a nice physical interpretation via shorted
connection of a multiport network.

Theorem 1: L ≥ 0 and has a simple zero eigenvalue if,
and only if, G+ is connected and ZF− > 0, or equivalently,
YF− > 0.

Proof: The necessity proof is quite straightforward and
is omitted for brevity.

To show the sufficiency, we first augment F− with n −
1 − m1 edges from G+ to form a spanning tree F of G.
Then, we obtain an augmented (n− 1)-port network A. We
label the ports corresponding to F− as the first m1 ports. Let

the resistance matrix of A be Za =

[
Za
11 Za

12

Za
21 Za

22

]
. Clearly,

ZF− = Za
11.

Then, we short the m1 ports corresponding to F−, leading
to a shorted connection C of A, as depicted in Fig. 2. The
resistance matrix of C is given by Zc = Za/11.

Port 1 Port 𝑚𝑚1

⋯⋯

Port 𝑚𝑚1+1 Port 𝑛𝑛−1

Fig. 2. Shorted connection

Since all ports corresponding to F− are shorted, there is
no current flowing through the negative resistors. Therefore,
power is dissipated through the shorted network C. If further
G+ is connected, then C is strictly passive, yielding Zc =
Za/11 > 0. By the knowledge of Schur complement [19],
Za
11 > 0 together with Za/11 > 0 implies Za > 0 and, thus,

L ≥ 0 and has a simple zero eigenvalue.
When G does not have any cycle containing two negatively

weighted edges, Theorem 1 reduces to the condition obtained
in [8] and [9].

V. INERTIA OF SIGNED LAPLACIANS

In this section, we show that when L is indefinite, YF−

encodes the information concerning the inertia of L.
Let D be partitioned as before, i.e, D=

[
DF− DC− DG+

]
.

Also partition W as W = diag{WF− ,WC− ,WG+
}. Let

DG− =
[
DF− DC−

]
and WG− =diag{WF− ,WC−}. Since

F− is a spanning forest of G−, there exists a matrix T of full
row rank such that DG− =DF−T . Denote by L+ and L− the
signed Laplacians associated with G+ and G−, respectively.
Clearly, L = L+ + L−.

Recall the m1-port network with ports corresponding to
the edges of F−. It can be regarded as the parallel connection
of a positive m1-port network with all positive resistances
and a negative m1-port network with all negative resistances.



The conductance matrices of the positive m1-port network
and negative m1-port network are given by

Y +
F−

=
(
D′F−

L†+DF−

)†
, Y −F−

=
(
D′F−

L†−DF−

)†
.

Then, YF− = Y +
F−

+ Y −F−
. Further computation yields

Y −F−
=

(
D′F−

(
DG−WG−D

′
G−

)†
DF−

)†
=TWG−T

′.

For simplicity, we assume here G+ to be connected.
Theorem 2: For a given signed Laplacian L, there holds

π(L) = π(YF−) + (0, 1, n−1−m1).

Proof: First, consider a matrix M=

[
−W−1G−

D′G−

DG− L+

]
.

Applying Schur complement on M yields

M/11 = L+ +DG−WG−D
′
G−

= L+ + L− = L,

M/22 = −W−1G−
−D′G−

L†+DG− .

Note that M11 > 0, M22 ≥ 0, and ker(M22) ⊂ ker(M12).
By the inertia additivity formula of generalized Schur com-
plement [20], we have

π(M)=π(M11)+π(M/11)=(0, 0,m−)+π(L)

=π(M22)+π(M/22)=(0, 1, n− 1)+π(M/22).
(1)

Now consider another matrix N =

[
−W−1G−

T ′

T Y +
F−

]
. Since

G+ is connected, it follows that Y +
F−

> 0. Applying Schur
complement on N yields

N/11=Y
+
F−

+ TWG−T
′=Y +

F−
+ Y −F−

= YF− ,

N/22=−W−1G−
−T ′Y +−1

F−
T =−W−1G−

−D′G−
L†+DG−=M/22.

Again, by the inertia additivity formula, we have

π(N)=π(N11)+π(N/11)=(0, 0,m−)+π(YF−)

=π(N22)+π(N/22)=(0, 0,m1)+π(N/22).
(2)

From (1) and (2) together with M/22=N/22, it follows that

π(M)− π(N) = π(L)− π(YF−) = (0, 1, n−1−m1)

and, thus, π(L) = π(YF−) + (0, 1, n− 1−m1).
The authors in [14] gave an alternative way to characterize

the inertia of a signed Laplacian L, assuming that L has a
simple zero eigenvalue.

VI. CONCLUSION

In this paper, we characterized the set of negative weights
maintaining the positive semidefiniteness of signed Lapla-
cians via n-port network theory. When a signed Laplacian is
not positive semidefinite, we characterized its inertia via the
notion of conductance matrix.

One future direction is to extend the discussions to directed
signed graphs. The goal is to explore under what conditions
the asymmetric signed Laplacians have all eigenvalues in the
open right half plane except a simple zero eigenvalue. Some
results on certain special cases can be found in [11], [21].

There have also been results reported for signed adjacency
matrices, e.g., [22]. How to connect those results with signed
Laplacians is under our current investigation.
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