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Abstract— In this paper, we introduce a definition of phase
response for a class of multi-input multi-output (MIMO) linear
time-invariant (LTI) systems, the frequency responses of which
are sectorial at all frequencies. This phase concept generalizes
the notions of positive realness and negative imaginariness. We
also define the half-sectorial systems and provide a time-domain
interpretation. As a starting point in an endeavour to develop a
comprehensive phase theory for MIMO systems, we establish a
small phase theorem for feedback stability, which complements
the well-known small gain theorem. In addition, we derive a
sectored real lemma for phase-bounded systems as a natural
counterpart of the bounded real lemma.

Index Terms— MIMO systems, phase response, small phase
theorem, sectored real lemma, half-sectorial systems

I. INTRODUCTION

In the classical frequency domain analysis of single-input-
single-output (SISO) systems, the magnitude (gain) response
and phase response go hand in hand. In particular, the Bode
magnitude plot and phase plot are always drawn shoulder to
shoulder. The combined Bode plot of a loop transfer function
provides a significant amount of useful information about the
closed-loop stability and performance. The gain and phase
crossover frequencies of a loop transfer function give salient
information on the gain and phase margins of the feedback
system. The famous Bode gain-phase integral relation binds
the gain and phase together. In frequency domain controller
synthesis, phase also plays an important role. Loop-shaping
design techniques, such as lead and lag compensation, are
rooted in the phase stabilization ideas.

The inception of MIMO systems theory sees extension and
thriving of the magnitude concept, but not equal flourishing
in the phase concept. While the small gain theorem is widely
known in the field of robust control, much less attention
has been paid to the development of a small phase theorem.
Moreover, the magnitude plot of a MIMO frequency response
has been inbuilt to the computing environment MATLAB, a
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useful phase plot has not been available in practice. Several
preliminary works on phase information of MIMO systems
include [2], [6], [8], [17], [22], [24]. The references [2], [6],
[8] extended the Bode gain-phase integral relation for SISO
systems to MIMO systems. The reference [24] proposed a
definition of phases for MIMO LTI systems based on matrix
polar decomposition and formulated a small phase theorem.
However, the condition therein depends on both phase and
gain information, which somewhat deviates from the purpose
of finding a phase counterpart to the small gain theorem. An
alternative way to extract the phasic information of a MIMO
LTI system was proposed in [22] by examining the numerical
range of the frequency response. The idea of using numerical
range as a tool for robust stability studies has received more
attention recently. The reference [17] suggested to use phase
spread as a performance measure of uncertain systems whose
numerical ranges are contained in a cone sector. In this paper,
we define a vector-valued phase response of a MIMO system
based on numerical range. The phase response fully captures
the phasic information of a MIMO system, as opposed to the
phase spread used in [17].

An important line of research with a phasic point of view
is on positive real (passive) and negative imaginary systems.
Roughly speaking, one can think of positive real systems as
those whose phases lie within [−π2 ,

π
2 ] and negative imagi-

nary systems as those whose phases over positive frequencies
lie within [−π, 0]. Research on positive real systems can be
traced back to more than half a century ago and has led to a
rich theory through efforts of generations of researchers. See
books [1], [4], [5], [7] and the survey paper [16] for a review.
Over the past two decades, negative imaginary systems [18],
[23] and counter-clockwise dynamics [3] have attracted much
attention. The abundant studies on these systems, concerning
feedback stability, performance and beyond, provide valuable
insights in developing a general phase theory for MIMO LTI
systems.

One main reason accounting for the underdevelopment of
MIMO phases is the following. While the gains of a complex
matrix are well described by its singular values, a universally
accepted definition of matrix phases has been lacking over a
long period. Very recently, we initiated to adopt the canonical
angles introduced in [9] as the phases of a sectorial complex
matrix whose numerical range does not contain the origin
[27]. We studied various properties of matrix phases, some
of which are briefly reviewed later. This paves the ground for
conducting a systematic study of phase analysis and design
for MIMO LTI systems.

In this paper, we first define the phase responses of MIMO
LTI systems whose frequency responses are sectorial at all



frequencies. Such phase concept agrees with and generalizes
the notions of positive realness and negative imaginariness.
We then develop a small phase theorem for negative feedback
interconnections of phase bounded systems, complementing
the well known small gain theorem. We derive a sectored real
lemma, which gives state space conditions for phase-bounded
systems in terms of linear matrix inequalities (LMIs). This
serves as a counterpart of bounded real lemma. In addition,
we pay special attention to the class of half-sectorial systems
which exhibit a nice time-domain interpretation. We absorb
much nutrition from the existing studies on positive real sys-
tems, negative imaginary systems, KYP lemma, generealized
KYP lemma, integral quadratic constraints (IQCs), etc. along
the way.

The rest of the paper is organized as follows. A review of
matrix phases is presented in Section II. The phase responses
of MIMO LTI systems are defined in Section III, followed
by the discussions on half-sectorial systems in Section IV. A
small phase theorem is presented in Section V. State-space
conditions are derived for phase bounded systems in Section
VI. The paper is concluded in Section VII. The notation used
in this paper is more or less standard and will be made clear
as we proceed. The proofs are omitted due to page limit.

II. PHASES OF A COMPLEX MATRIX

A nonzero complex scalar c can be represented in the polar
form as c = σeiφ with σ > 0 and φ taking values in a half
open 2π-interval, typically [0, 2π) or (−π, π]. Here σ = |c|
is called the modulus or the magnitude and φ = ∠c is called
the argument or the phase. The polar form is particularly
useful when multiplying two complex numbers. We simply
have |ab| = |a||b| and ∠(ab) = ∠a+ ∠b mod 2π.

It is well understood that an n×n complex matrix C has
n magnitudes, served by the n singular values

σ(C) =
[
σ1(C) σ2(C) · · · σn(C)

]
with σ(C) = σ1(C) ≥ σ2(C) ≥ · · · ≥ σn(C) = σ(C) [11].
The magnitudes of a matrix possess plentiful nice properties,
among which the following majorization inequality regarding
the magnitudes of matrix products are of particular interest
to the control community.

Given x, y ∈ Rn, we denote by x↓ and y↓ the rearranged
versions of x and y so that their elements are sorted in a
non-increasing order. Then, x is said to be majorized by y
[20], denoted by x ≺ y, if
k∑
i=1

x↓i ≤
k∑
i=1

y↓i , k = 1, . . . , n− 1, and
n∑
i=1

x↓i =

n∑
i=1

y↓i .

When x and y are nonnegative, x is said to be log-majorized
by y, denoted by x ≺log y, if

k∏
i=1

x↓i ≤
k∏
i=1

y↓i , k = 1, . . . , n− 1, and
n∏
i=1

x↓i =

n∏
i=1

y↓i .

The magnitudes of matrix product satisfy [20]

σ(AB) ≺log σ(A)� σ(B), (1)

where � denotes the Hadamard product, i.e., the elementwise
product.

In contrast to the magnitudes of a complex matrix C, how
to define the phases of C appears to be an unsettled issue. An
early attempt [24] defined the phases of C as the phases of
the eigenvalues of the unitary part of its polar decomposition.
This definition was motivated by the seeming generalization
of the polar form of a scalar to the polar decomposition of a
matrix. However, phases defined this way do not have certain
desired properties.

Very recently, we discovered a more suitable definition of
matrix phases based on numerical range [27]. The numerical
range, also called field of values, of a matrix C ∈ Cn×n is
defined as W (C) = {x∗Cx : x ∈ Cn with ‖x‖ = 1}, which,
as a subset of C, is compact and convex, and contains the
spectrum of C [12].

If 0 /∈ W (C), then W (C) is contained in an open half
complex plane due to its convexity. In this case, C is said
to be a sectorial matrix. It is known that a sectorial C is
congruent to a diagonal unitary matrix that is unique up to a
permutation [13], [29], i.e., there exists a nonsingular matrix
T and a diagonal unitary matrix D such that C = T ∗DT .
This factorization is called sectorial decomposition in [29].
Let δ(C) be the field angle of C, i.e., the angle subtended by
the two supporting rays of W (C) at the origin. We define the
phases of C, denoted by φ1(C), φ2(C), . . . , φn(C), to be the
phases of the eigenvalues of D, taking values in an interval
(θ, θ+π), where θ ∈ [−π, δ(C)). The phases defined in this
fashion coincide with the canonical angles of C introduced
in [9]. Assume without loss of generality that

φ(C) = φ1(C) ≥ φ2(C) ≥ · · · ≥ φn(C) = φ(C).

Moreover, define φ(C) = [φ1(C) φ2(C) · · · φn(C)].
A graphic interpretation of the phases is given in Fig. 1.

The two angles from the positive real axis to each of the two
supporting rays of W (C) are φ(C) and φ(C) respectively.
The other phases of C lie in between.

�𝜙𝜙 𝐶𝐶
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Fig. 1. Geometric interpretation of φ(C) and φ(C).

It is noteworthy that the notion of matrix phases subsumes
the well-studied strictly accretive matrices [15], i.e., matrices
with positive definite Hermitian part. In particular, the phases
of C lie in (−π/2, π/2) if and only if C is strictly accretive.

Given matrix C, we can check whether it is sectorial or not
by plotting its numerical range. From the plot of numerical
range, we can also determine a π-interval (θ, θ+π) in which



the phases take values. How to efficiently compute φ(C) is
an important issue. The following observation provides some
insights along this direction. Suppose C is sectorial. Then it
admits a sectorial decomposition C = T ∗DT and thus

C−1C∗ = T−1D−1T−∗T ∗D∗T = T−1D−2T,

indicating that C−1C∗ is similar to a diagonal unitary matrix.
Hence, we can first compute ∠λ(C−1C∗), taking values in
(−2θ−2π,−2θ), and then let φ(C) = − 1

2∠λ(C−1C∗). This
gives one possible way to compute φ(C). We are currently
exploring other methods, hopefully of lower complexity, for
the computation of matrix phases.

The matrix phases defined above have plentiful properties,
of which a comprehensive study has been conducted in [27].
First, note that the set of phase bounded matrices defined as

C[α, β]

=
{
C∈Cn×n : C is sectorial and φ(C)≤β, φ(C)≥α

}
,

where 0 ≤ β−α < 2π, is a cone. In addition, the following
lemma can be shown.

Lemma 1 ([27]): If β − α < π, then C[α, β] is a convex
cone.

Another important property pertinent to later developments
in this paper is concerned with product of sectorial matrices.
In view of the magnitude counterpart in (1), one may expect
φ(AB) ≺ φ(A) + φ(B) to hold for sectorial matrices A
and B. This, unfortunately, fails even for positive definite A
and B. Notwithstanding, if we consider instead λ(AB) =[
λ1(AB) . . . λn(AB)

]
, i.e., the vector of eigenvalues of

AB, the following weaker but useful result has been derived.
Lemma 2 ([27]): Let A,B ∈ Cn×n be sectorial matrices

with phases in (θ1, θ1 + π) and (θ2, θ2 + π), respectively,
where θ1 ∈ [−π, δ(A)) and θ2 ∈ [−π, δ(B)). Let ∠λ(AB)
take values in (θ1 + θ2, θ1 + θ2 + 2π). Then

∠λ(AB) ≺ φ(A) + φ(B).

The above majorization relation underlies the development
of a small phase theorem, much in the spirit of (1) being the
foundation of the celebrated small gain theorem. To be more
specific, recall that the singularity of matrix I+AB plays an
important role in the stability analysis of feedback systems.
It is straightforward to see that if σ(A) and σ(B) are both
sufficiently small, then I + AB is nonsingular. By contrast,
one can observe that if φ(A) and φ(B) are both sufficiently
small in magnitudes, then I +AB is nonsingular.

III. PHASE RESPONSE OF MIMO LTI SYSTEMS

Let G be an m × m real rational proper stable transfer
matrix, i.e., G ∈ RHm×m∞ . Then σ(G(jω)), the vector of
singular values of G(jω), is an Rm-valued function of the
frequency, which we call the magnitude response of G. The
H∞ norm of G, denoted by ‖G‖∞ = supω∈R σ(G(jω)), is
of particular importance.

Suppose G(jω) is sectorial for all ω ∈ R ∪ {∞}. Such
a system is called a frequency-wise sectorial system. Also,
assume for simplicity that W (G(jω)) does not intersect the

negative real axis for all ω ∈ R∪{∞}. Then φ(G(jω)), the
vector of phases of G(jω) with each element taking values
in (−π, π), is well defined as an Rm-valued function of the
frequency, which we call the phase response of G. We define
the H∞ phase of G, as the counterpart to its H∞ norm, to
be

Φ∞(G) = sup
ω∈R

φ(G(jω)).

Clearly, Φ∞(G)≤ π. It is noteworthy that the set of phase
bounded systems

C[α] = {G ∈ RHm×m∞ : Φ∞(G) ≤ α},

where α ∈ [0, π), is a cone.
Having defined the phase response of G, we can now plot

σ(G(jω)) and φ(G(jω)) together to complete the MIMO
Bode plot of G, laying the foundation of a complete MIMO
frequency-domain analysis.

Example 1: The Bode plot of system

G(s) =

[
1

s2+2s+200
2

s2+2s+200

2
s2+2s+200

0.2s3+0.5s2+44.2s+24
s3+3s2+202s+200

]
is shown in Fig. 2.
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Fig. 2. MIMO Bode plot of a frequency-wise sectorial system.

Note that the well-known notions of positive real systems
[1], [5], [16] and negative imaginary systems [18], [23] can
be characterized using their phase responses. For simplicity,
here we briefly mention the strong and strict versions of these
notions. A transfer function matrix G ∈ RHm×m∞ is said to
be strongly positive real if G(jω) +G∗(jω) > 0 for all ω ∈
[−∞,+∞] [19]. In the language of phase, G ∈ RHm×m∞ is
strongly positive real if and only if

Φ∞(G) <
π

2
.

On the other hand, a transfer function matrix G is said to be
strictly negative imaginary if (G(jω) − G∗(jω))/j < 0 for
all ω ∈ (0,∞) [18]. This is equivalent to

[φ(G(jω)), φ(G(jω))] ⊂ (−π, 0)



for all ω ∈ (0,∞). The phase concept of MIMO LTI systems
gives a way to unify these concepts, together with of course
the trivial SISO system phase, and more. The system shown
in Fig. 2 is neither positive real nor negative imaginary but
it has well-defined phase response.

IV. HALF-SECTORIAL SYSTEMS

Let G ∈ RHm×m∞ . Then, G(jω) is conjugate symmetric,
i.e.,

G(−jω) = G(jω),

and hence W (G(jω)) and W (G(−jω)) are symmetric about
the real axis. This property hints that in dealing with many
problems such as feedback stability, one only has to examine
the frequency response for nonnegative frequency, while the
other half frequency range will be automatically taken care
of due to the symmetry. Following this hint, we define half-
sectorial systems, and provide a time-domain interpretation
for such systems.

A system G is said to be half-sectorial if

cl. Co{W (G(jω)), ω ≥ 0}

is contained in an open half plane and does not intersect the
negative real axis, where cl. denotes closure and Co denotes
convex hull.

Interestingly, there is a nice time-domain interpretation for
half-sectorial systems. For preparation, we briefly introduce
some background knowledge on signal spaces and Hilbert
transform. The Hilbert transform has been used extensively
in signal processing, especially in the time-frequency domain
analysis. It has also been applied in the control field, mostly
in gain-phase relationship and system identification, etc. We
refer interested readers to [10] for more details.

Let F be the usual Fourier transform on LT2 (−∞,∞), the
Hilbert space of complex-valued bilateral time functions

[Fx](jω) =
1√
2π

∫ ∞
−∞

x(t)e−jωtdt.

Note that F is an isometry onto LΩ
2 (−∞,∞), the Hilbert

space of complex-valued bilateral frequency functions. If
we decompose LΩ

2 (−∞,∞) into a positive frequency signal
space and a negative frequency signal space as

LΩ
2 (−∞,∞) = LΩ

2 (0,∞)⊕ LΩ
2 (−∞, 0),

then clearly this is an orthogonal decomposition. We also
naturally have the orthogonal decomposition

LT2 (−∞,∞) = F−1LΩ
2 (0,∞)⊕F−1LΩ

2 (−∞, 0).

Let us call the first space above A and hence the second
spaceA⊥. Let P be the orthogonal projection onto LΩ

2 (0,∞)
and Q be the orthogonal projection onto A. Then the
commutative diagram in Fig. 3 gives a complete picture
of the relationships among these spaces. Recall the Hilbert
transform H : LT2 (−∞,∞)→ LT2 (−∞,∞) defined as

[Hx](t) =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ.

It then turns out that Qx = 1
2 (x + jHx) and (I − Q)x =

1
2 (x− jHx), the analytic part and the skew-analytic part of
x respectively.

�
-

PQ

6

LΩ
2 (0,∞)

F

F−1

A

6

LT2 (−∞,∞)

?

I −Q

A⊥

�
-
F

F−1

�
-
F

F−1

LΩ
2 (−∞,∞)

?

I − P

LΩ
2 (−∞, 0)

Fig. 3. A commutative diagram.

Now let G : LT2 (−∞,∞) → LT2 (−∞,∞) be the linear
operator corresponding to G(s) ∈ RH∞. Clearly, both A
and A⊥ are invariant subspaces of G. We define the positive
frequency numerical range and negative frequency numerical
range as

W+(G) :={〈Qu,Gu〉 : u∈ LT2 (−∞,∞), ‖u‖2 = 1}
W−(G) :={〈(I −Q)u,Gu〉 : u∈ LT2 (−∞,∞), ‖u‖2 = 1}

respectively. It can be easily seen that W+(G) and W−(G)
are symmetric with respect to the real axis. Also, note that

〈Qu,Gu〉 =

∫ +∞

−∞
[Qu]∗(t)[Gu](t)dt

=

∫ +∞

0

[Fu]∗(jω)G(jω)[Fu](jω)dω,

which suggests that

cl. W+(G) ⊂ cl. Co

{
1

2
W (G(jω)), ω ≥ 0

}
.

In fact, one can further show

cl. W+(G) = cl. Co

{
1

2
W (G(jω)), ω ≥ 0

}
,

and thus Φ∞(G) = max{supz∈W+(G) ∠z, supz∈W−(G) ∠z}.
The detailed proof is omitted for brevity and will be available
in a longer version of this paper.

V. SMALL PHASE THEOREM

Suppose G and H are m×m real rational proper transfer
function matrices. The feedback interconnection of G and
H , as depicted in Fig. 4, is said to be stable if the Gang of
Four matrix

G#H =

[
(I +HG)−1 (I +HG)−1H
G(I +HG)−1 G(I +HG)−1H

]



is stable, i.e., G#H ∈ RH2m×2m
∞ .
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Fig. 4. A standard feedback system.

The celebrated small gain theorem [19], [30] is one of the
most used results in robust control theory over the past half
a century. A version of it states that for G,H ∈ RHm×m∞ ,
the feedback system G#H is stable if

σ(G(jω))σ(H(jω)) < 1

for all ω ∈ R ∪ {∞}.
There was an attempt to formulate a small phase theorem

by using phases defined from the matrix polar decomposition
[24]. However, the condition therein involves both phase and
gain information and thus deviates from the initial purpose
of having a phase counterpart of the small gain theorem.

Armed with the new definition of matrix phases φ(C), we
work out a version of the small phase theorem.

Theorem 1 (Small phase theorem): For frequency-wise
sectorial G,H ∈ RHm×m∞ , the feedback system G#H is
stable if

φ(G(jω)) + φ(H(jω)) < π (2)

for all ω ∈ R ∪ {∞}.
We wish to mention that the small phase theorem can also

be established via IQCs. Specifically, when the condition (2)
is satisfied, one can find a dynamic multiplier of the form

Π(s) =

[
0 ejθ(s)

e−jθ(s) 0

]
so that Π(s) ∈ L∞ is continuous on the imaginary axis and
the following quadratic constraints[

I
G(jω)

]∗
Π(jω)

[
I

G(jω)

]
≥ 0,[

−H(jω)
I

]∗
Π(jω)

[
−H(jω)

I

]
< 0

are satisfied for all ω∈R∪{∞}. The feedback stability then
follows from the result in [21]. From this perspective, the
small phase theorem provides a nice phasic interpretation of
the condition obtained from IQCs.

The small phase theorem generalizes a stronger version of
the passivity theorem [7], [19], which states that for G,H∈
RHm×m∞ , the feedback system G#H is stable if G and H
are strongly positive real.

Note that the small gain theorem provides a quantifiable
tradeoff between the gains of G and H , while the above small
phase theorem does the same with respect to the phases of
G and H . In the literature, the notions of input feedforward

passivity index and output feedback passivity index [4], [16],
[26], [28] have been used to characterize the tradeoff between
the surplus and deficit of passivity in open-loop systems. It
is our belief that the concept of MIMO system phases is
more suited to this task. Specifically, π

2 − Φ∞(G) gives a
natural measure of passivity of system G, which we call
the angular passivity index. The small phase theorem above
implies that if the sum of the angular passivity indexes of
G and H is positive, then G#H is stable. In addition, one
can see that π − Φ∞(GH) yields a natural phase stability
margin of G#H .

It is well known that the condition given in the small gain
theorem is necessary in the following sense [30]. Let G ∈
RHm×m∞ . Then, G#H is stable for all H ∈RHm×m∞ with
‖H‖∞<γ if and only if ‖G‖∞ ≤ 1

γ .
Regarding the necessity of small phase theorem, we have

the following conjecture.
Conjecture 1 (Small phase theorem with necessity): Let

G ∈ RHm×m∞ . Then, G#H is stable for all H ∈ RHm×m∞
with φ(H(jω)) < π

2 + ∠m(jω), where m is a scalar real
rational function, if and only if φ(G(jω)) ≤ π

2 − ∠m(jω)
for all ω ∈ R ∪ {∞}.

Evidently, this conjecture holds in the SISO case in view of
the Nyquist stability criterion. A rigorous proof in the MIMO
case is under our current investigation.

VI. STATE-SPACE CONDITIONS FOR PHASE BOUNDED
SYSTEMS

The H∞ norm of an LTI system can be determined by the
well-known bounded real lemma. The efficient computation
of H∞ norm is specifically useful as evidenced in small gain
theorem and facilitates robust control design.

The bounded real lemma [30] states that for G∈RHm×m∞

with a minimal realization
[
A B
C D

]
, ‖G‖∞ < γ if and

only if there exists X > 0 satisfying the LMIA′X +XA XB C ′

B′X −γI D′

C D −γI

 < 0.

One would wish to see an analogous state-space condition
for phase bounded systems. It is equally important to have an
LMI characterization for a system G satisfying Φ∞(G)<α,
where α∈(0, π]. For this purpose, we obtain a sectored real
lemma in the case when α ∈ (0, π2 ], which serves as a natural
counterpart of the bounded real lemma.

Theorem 2 (Sectored real lemma): Let G ∈ RHm×m∞

with a minimal realization
[
A B
C D

]
and α ∈ (0, π2 ]. Then

Φ∞(G)<α if and only if there exists X > 0 satisfying the
LMI[

A′X +XA XB−e−j( π
2−α)C ′

B′X−ej( π
2−α)C −ej( π

2−α)D−e−j( π
2−α)D′

]
<0.

The sectored real lemma can be proved by exploiting the
well-known KYP lemma [19] which builds the equivalence
between frequency domain characterization over the entire
frequency range and a finite dimensional LMI.



When α = π
2 , the above sectored real lemma reduces to

the strongly positive real lemma [25].
The case when α∈(π2 , π] appears much more complicated.

Nevertheless, for half-sectorial real systems, one only needs
to concern the frequency domain characterization for positive
frequency, i.e., {jω|ω ∈ [0,∞]}. By virtue of the generalized
KYP lemma [14], we are able to derive an LMI condition.

In contrast to the KYP lemma which copes with frequency
domain inequalities over the entire frequency, the generalized
KYP lemma has the capability to address the frequency do-
main inequalities over partial frequency ranges. In particular,
it builds the equivalence between inequalities on curves in
the complex plane and LMIs.

Theorem 3: Let G ∈ RHm×m∞ with a minimal realization[
A B
C D

]
and α ∈ (π2 , π]. Then G is half-sectorial and

Φ∞(G)<α if and only if there exist Hermitian matrices X
and Y satisfying either

Y > 0,

[
A B
I 0

]′[
0 X + jY

X − jY 0

][
A B
I 0

]
+M < 0,

where M=

[
0 −e−j(α−π

2 )C ′

−ej(α−π
2 )C −ej(α−π

2 )D − e−j(α−π
2 )D′

]
, or

Y > 0,

[
A B
I 0

]′[
0 X + jY

X − jY 0

][
A B
I 0

]
+N < 0,

where N=

[
0 −ej(α−π

2 )C ′

−e−j(α−π
2 )C −e−j(α−π

2 )D − ej(α−π
2 )D′

]
.

VII. CONCLUSION

In this paper, we define the phase responses of frequency-
wise sectorial MIMO LTI systems. We obtain a small phase
theorem for feedback stability, a natural counterpart of the
well-known small gain theorem. In addition, we derive a sec-
tored real lemma for phase-bounded systems, a counterpart
of the bounded real lemma.

This paper focuses on stable LTI systems. We are currently
trying to extend phase analysis to marginally stable MIMO
LTI systems with possible zeros on the imaginary axis. Such
extension will further generalize the existing passivity theory.
Moreover, we wish to study the synthesis problem, aiming at
solving an H∞-phase optimal control problem, a counterpart
of the H∞-norm optimal control problem. How to apply and
extend phase theory to large scale dynamical networks is also
an interesting future work.
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