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Abstract One of the main components of a robust control theory is a quantifiable
description of system uncertainty. A good uncertainty description should have three
desirable properties. First, it is required to capture important unmodeled dynamics
and perturbations. Second, it needs to be mathematically tractable, preferably by
using elementary tools. Third, it should lead to a self-contained robust control
theory, encompassing analysis and synthesis techniques that are accessible to both
researchers and practitioners. While the additive uncertainty and multiplicative
uncertainty are two of the most commonly employed uncertainty descriptions in sys-
tems modelling and control, they come up short of fulfilling the requirements above.
In this chapter, we introduce the uncertainty quartet, a.k.a. the +−×÷ uncertainty
(as is simpler to pronounce in oriental languages), which combines in a unifying
framework the additive, multiplicative, subtractive and divisive uncertainties. An
elementary robust control theory, involving mostly polynomial manipulations, is
developed based on the uncertainty quartet. The proposed theory is demonstrated
in a case study on controlling an under-sensed and under-actuated linear (USUAL)
inverted pendulum system.

1 Uncertainty in Dynamical Systems

Model-based control synthesis is ubiquitous in engineering. It involves designing a
controller based on a mathematical model of the system to be controlled (a.k.a. the
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plant). Every model, irrespective of its complexity, can at best approximate the dy-
namics of a real system. In other words, uncertainty is inherent to any mathematical
model of a system. An uncertainty description or model provides a useful means
to characterizing certain unmodeled dynamics of and unmeasured perturbations on
a system. In what follows, we review several uncertainty models that have been
widely adopted in practice, and discuss their advantages and shortcomings with the
aid of an illustrative example involving a double integrator. Moreover, we introduce
a powerful uncertainty description, known as the uncertainty quartet, that can be
used to model a large class of uncertainties. A robust control theory based on the
uncertainty quartet is subsequently developed in the succeeding sections.

1.1 Common Uncertainty Descriptions

The additive and multiplicative uncertainty descriptions constitute two of the most
well-studied models in robust control. As an illustration, consider a nominal double
integrator system

P(s) =
1
s2 ,

which may model an ideal rigid body undergoing a forced linear motion. The
real system, however, would have an elastic body. The dynamics arising from the
presence of elasticity are not captured in this model and may correspond to an
additive damped oscillatory term:

P̃(s) = P(s)+
δω2

n

s2 +2ζ ωns+ω2
n
,

where δ denotes a small gain, ζ the damping ratio and ωn the natural frequency,
which can all be uncertain. The value of δ provides a quantification of the difference
between the nominal system P(s) and its perturbed model P̃(s). The additive
uncertainty description of the form

P̃(s) = P(s)+∆+(s)

can be used to model the aforementioned uncertainty satisfactorily. Observe that in
this example, ∆+(s) is stable and has a small magnitude response as determined by
the small parameter δ .

The use of the additive uncertainty model alone can be restrictive, as we explain
below. Suppose that the double integrator is subject to an uncertain gain instead and
the real system takes the form

P̃1(s) =
1+δ

s2 or P̃2(s) =
1

(1+δ )s2 ,
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where δ denotes a small parameter. To model P̃i(s) using the additive uncertainty
model, one would have to let

∆+(s) =
δ

s2 or ∆+(s) =
−δ

(1+δ )s2 .

In this case, both the uncertainty terms above are unstable, which are in no sense
small since they both have infinite induced gains. In order to model the aforemen-
tioned perturbations with reasonably small uncertainties, we appeal to alternative
uncertainty models having the multiplicative form

P̃1(s) = (1+∆×(s))P(s)

or the divisive form (a.k.a. the relative form)

P̃2(s) =
P(s)

1+∆÷(s)
.

With respect to these models, we have ∆×(s) = δ and ∆÷(s) = δ , both of which are
stable and small in magnitudes, as desired.

The following further demonstrates that the uncertainty descriptions covered
above are still inadequate from a practical point of view. Due to the existence of
a small stiffness in the rigid body motion, suppose the real system takes the form

P̃(s) =
1

s2 + ε2 ,

where ε is a small parameter. In this case, it can be verified that applying the
additive, multiplicative and divisive models would result in an uncertainty term that
is unstable. On the contrary, the subtractive form (a.k.a. the feedback form)

P̃(s) =
P(s)

1+∆−(s)P(s)

gives ∆−(s) = ε2, which is stable and small in magnitude.

1.2 The Uncertainty Quartet

By integrating the additive, subtractive, multiplicative, and divisive uncertainty
models within a unifying framework, we arrive at the following uncertainty descrip-
tion

P̃(s) =
(1+∆×(s))P(s)+∆+(s)
1+∆÷(s)+∆−(s)P(s)

; (1)
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see the block diagram in Fig. 1 for a depiction of P̃(s) as a mapping from ũ to ỹ.
We call the band of the four uncertainties the uncertainty quartet (or the +−×÷
uncertainty), and the 2-by-2 transfer matrix

∆∆∆(s) :=
[

∆÷(s) ∆−(s)
∆+(s) ∆×(s)

]
the uncertainty quartet matrix. It is straightforward to see that (1) gives rise to a
versatile form that can be used to model a wide class of uncertainties.

To motivate the utility of the uncertainty quartet, let us revisit the example of the
double integrator. Suppose the real system has dynamics of the form

P̃(s) =
1+δ2

s2 +δ1s+ ε2 ,

where ε2 is a small stiffness term, δ1 a small damping coefficient and δ2 a small
uncertain gain. It can be verified that using only the additive and multiplicative forms
of uncertainty would result in unstable ∆+(s) and ∆×(s) regardless of the values of
ε2, δ1 and δ2. Likewise, adopting only the relative and the feedback form of the
uncertainty would give rise to unstable ∆÷(s) and ∆−(s). On the other hand, if we
characterize P̃(s) with the uncertainty quartet by applying equation (1), we obtain

∆∆∆(s) =
[

∆÷(s) ∆−(s)
∆+(s) ∆×(s)

]
=

1
s+1

[
δ1 (δ1 + ε2)s+ ε2

0 δ2

]
.

Each member in this uncertainty quartet is stable and small in magnitude. This
example demonstrates the fact that while each of the individual uncertainty models
falls short of providing a satisfactory characterization of the uncertainty, their
combination (1) introduces a powerful framework in which we can model various
types of perturbations.

- - P(s) - -

�∆÷(s)�

6

- ∆+(s)

?
- ∆×(s) -

?

�∆−(s)

6

ũ ỹu y

−

Fig. 1 An uncertain system with +−×÷ uncertainty.
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Mathematically, the map from P(s) to P̃(s) is a linear fractional transformation
(LFT). In particular, let

LFT
([

T11(s) T12(s)
T21(s) T22(s)

]
,P(s)

)
=

T22(s)P(s)+T12(s)
T11(s)+T21(s)P(s)

,

then

P̃(s) = LFT
([

1+∆÷(s) ∆−(s)
∆+(s) 1+∆×(s)

]
,P(s)

)
.

The study of various uncertainty models has a long history in the field of
robust control. The additive, subtractive, multiplicative, and divisive models were
covered in such classic books as [Doyle et al., 1990], [Zhou and Doyle, 1998]
and revisited more recently in, for example, [Liu and Yao, 2016]; see also the
survey paper [Petersen and Tempo, 2014]. The uncertainty quartet unifies all 4 of
the aforementioned uncertainties within one powerful framework for robustness
analysis and control synthesis. It is worth noting that the notation of +−×÷
uncertainty was first used in [Halsey and Glover, 2005]. It is shown in [Gu and
Qiu, 1998] that the uncertainty quartet is closely related to the gap metric and
its variations [Zames and El-sakkary, 1980], [Georgiou and Smith, 1990], [Qiu
and Davison, 1992a], [Qiu and Davison, 1992b], [Vinnicombe, 1993], [Georgiou
and Smith, 1997]. The uncertainty quartet has also been used to describe the
interferences and distortions within a communication channel modeled by a two-
port network [Gu and Qiu, 2011], [Zhao and Qiu, 2016]. Moreover, one may
relate the uncertainty quartet to the coprime-factor uncertainty [Vidyasagar, 1985],
[McFarlane and Glover, 1990], [Georgiou and Smith, 1990], namely, a pair of
dynamic uncertainties additive to the coprime factors of a nominal system. It is
noteworthy that in the uncertainty quartet, each member acts directly on the input
and output of the nominal system, whereas the coprime-factor uncertainty depends
on a particular coprime factorization of the nominal system. In addition to the
uncertainty quartet, many other types of dynamic uncertainties have been studied
over the past decades; see, for instance, [Zhou and Doyle, 1998], [Petersen and
Tempo, 2014], [Liu and Yao, 2016], [Lanzon and Papageorgiou, 2009].

1.3 Notation

We formalize the notation in this chapter. Let III denote the identity matrix of a
proper dimension. Let R p×m denote the set of all p×m proper real-rational transfer
function matrices. The set of elements in R p×m containing bounded singular values
on the imaginary axis is denoted by RL p×m

∞ and the set of elements in RL p×m
∞

with bounded singular values on the right complex plane Re s > 0 is denoted by
RH p×m

∞ . A transfer function P(s) ∈R p×m is said to be stable if P(s) ∈RH p×m
∞ .

Define the set of uncertain systems of size r ∈ [0,1) centered at P(s) as
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B(P(s),r) =
{

LFT(III +∆∆∆(s),P(s)) : ∆∆∆(s) ∈RH 2×2
∞ , ‖∆∆∆(s)‖

∞
≤ r
}
. (2)

Throughout, the superscripts corresponding to the dimensions may be omitted for
notational simplicity.

Recall the standard Lebesgue space L2 endowed with the norm ‖ · ‖2 and Hardy
space H2 ⊂L2. The orthogonal complement of H2 in L2 is denoted by H ⊥

2 . In
other words, L2 = H2⊕H ⊥

2 , where ⊕ denotes the orthogonal sum. For a G(s) ∈
RL ∞, we have

‖G(s)‖∞ = sup
U(s)∈L2

‖G(s)U(s)‖2

‖U(s)‖2
.

Moreover, if U1(s) ∈H2 and U2(s) ∈H ⊥
2 , then

‖U1(s)+U2(s)‖2
2 = ‖U1(s)‖2

2 +‖U2(s)‖2
2.

2 Robust Closed-Loop Stability

As explained in the last section, uncertainty is intrinsic to every mathematical model
of a system. This fact is particularly problematic to model-based control — if
a model does not accurately describe the behavior of a system, how can we be
certain that a controller designed based on the model will perform well when it is
implemented on the system? Feedback, which underlies the field of systems and
control, is most commonly adopted to resolve this issue. It is a powerful tool with
which we desensitize a dynamical system to the effect of uncertainty. The theory
of feedback control, which will be briefly reviewed in this section, has been well
studied over recent decades and demonstrated to be effective in many application
scenarios [Zhou and Doyle, 1998], [Qiu and Zhou, 2009], [Vinnicombe, 2000]. We
begin with the notion of a standard feedback (or closed-loop) system, and define its
closed-loop stability. Then we analyze robust closed-loop stability when the plant is
subject to uncertainty quartet, based on which we derive a robust stability condition.

- - P(s)

?
� �C(s)

6
y1 y2

w1

w2

u1

u2

−

Fig. 2 A standard feedback system.

A closed-loop system composed of a plant P(s) ∈ R and a feedback con-
troller C(s) ∈ R is illustrated in Fig. 2. We denote it by P(s)#C(s). We say that
P(s)#C(s) is stable if for all exogenous signals w1,w2 ∈H2, the endogenous signals
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u1,u2,y1,y2 exist and belong to H2. Intuitively, stability means that the energy
within the feedback system stays bounded when it is injected with bounded-energy
exogenous signals. It is known that P(s)#C(s) is stable if and only if the associated
Gang of Four transfer matrix

P(s)#C(s) :=
[

1
P(s)

]
(1+P(s)C(s))−1 [1 C(s)

]
=


1

1+P(s)C(s)
C(s)

1+P(s)C(s)

P(s)
1+P(s)C(s)

P(s)C(s)
1+P(s)C(s)


is stable [Åström and Murray, 2008]. Here, both the closed-loop system and its
associated Gang of Four transfer matrix are denoted by P(s)#C(s) for notational
simplicity.

- - - P(s) -

- ∆+(s)

?
- ∆×(s)-

?

?
��C(s)

6

�∆−(s)
6

∆÷(s)�
6− −

w1

w2

ũ1

ỹ2y1

u2

u1 y2

û1

ŷ2

Fig. 3 A closed-loop system with +−×÷ uncertainty quartet at plant side.

Recall from the preceding section that an uncertainty quartet is useful for mod-
eling a rich class of uncertainties. When model-based feedback control design is
performed based on a mathematical model of a plant, it gives rise to a stable nominal
closed-loop system. In the following, we analyze the closed-loop stability when the
plant is subject to uncertainty quartet and provide a quantification of how much
uncertainty is tolerable while the feedback system remains stable. Mathematically,
let P(s)#C(s) be a nominal closed-loop system. We derive an upper bound on r > 0
such that P̃(s)#C(s) is stable for all P̃(s) ∈ B(P(s),r). First recall from (2) that
every P̃(s) ∈B(P(s),r) can be expressed as

P̃(s) = LFT
([

1+∆÷(s) ∆−(s)
∆+(s) 1+∆×(s)

]
,P(s)

)
=

(1+∆×(s))P(s)+∆+(s)
1+∆÷(s)+∆−(s)P(s)

,

where

‖∆∆∆(s)‖∞ =

∥∥∥∥[∆÷(s) ∆−(s)
∆+(s) ∆×(s)

]∥∥∥∥
∞

≤ r.
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See Fig. 3 for a depiction of the perturbed closed-loop system P̃(s)#C(s). It is shown
in [Gu and Qiu, 2011] that the signals within the perturbed closed-loop system
satisfy the following relations[

û1
ŷ2

]
= ∆∆∆(s)

[
u1
y2

]
and

[
u1
y2

]
= P(s)#C(s)

[
û1
ŷ2

]
.

As a result, we can equivalently transform the perturbed closed-loop system in Fig. 3
into a standard feedback interconnection of an uncertainty quartet ∆∆∆(s) and the
Gang of Four transfer matrix P(s)#C(s) as shown in Fig. 4. Furthermore, it can
be verified that the stability of P̃(s)#C(s) is equivalent to that of the closed-loop
system in Fig. 4.

- ∆∆∆(s)

[
û1
ŷ2

]
�P(s)#C(s)

[
u1
y2

]
−

Fig. 4 An equivalent closed-loop system composed of an uncertainty quartet and the Gang of Four
transfer matrix.

Since both open-loop systems ∆∆∆(s) and P(s)#C(s) are stable, robust stability
of the closed-loop system in Fig. 4 can be analyzed by means of the well-known
small-gain theorem [Zhou and Doyle, 1998, Theorem 8.1]. In particular, the closed-
loop system ∆∆∆(s)# [P(s)#C(s)] is stable for all ‖∆∆∆(s)‖ ≤ r if, and only if, r <
‖P(s)#C(s)‖−1

∞ . Consequently, we have the following robust stability condition.

Theorem 1. Let r ∈ [0,1). The perturbed closed-loop system P̃(s)#C(s) in Fig. 3 is
stable for all P̃(s) ∈B(P(s),r) if and only if

r < ‖P(s)#C(s)‖−1
∞ .

By virtue of Theorem 1, it is natural to define ‖P(s)#C(s)‖−1
∞ as the robust

stability margin of the nominal closed-loop system P(s)#C(s). The larger the mar-
gin is, the more robust the closed-loop system will be against model uncertainties
characterized in the form of an uncertainty quartet. An optimal control problem
naturally arises from this context. It involves designing a feedback controller C(s)
for a nominal plant P(s) such that the stability margin ‖P(s)#C(s)‖−1

∞ is maximized,
or equivalently, solving the following H∞ control problem:

min
C(s)
‖P(s)#C(s)‖∞. (3)
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The optimally robust stability margin is thus given by

α(P(s)) :=
(

min
C(s)
‖P(s)#C(s)‖∞

)−1

. (4)

3 Optimally Robust Controller Design

In this section, our aim is to derive an optimally robust controller C(s) that min-
imizes ‖P(s)#C(s)‖∞. This is an H∞ optimal control problem. It has favourable
properties and can be solved efficiently using state-space methods [Doyle et al.,
1989], [McFarlane and Glover, 1990] based on algebraic Riccati equations. Given
the simplicity of our setup, formulated in terms of scalar transfer functions, we
provide below a more straightforward and efficient alternative to solving the opti-
mization problem via a polynomial approach.

It is worth noting that a certain polynomial method was proposed in [Liang
and Qiu, 2009], [Qiu and Zhou, 2009, Chapter 9], where the H∞ optimal control
problem is solved by calculating a Hankel matrix based on special bases. An-
other similar polynomial method was proposed in [Kanno, 2003] based on solving
polynomial equations. By contrast, in this chapter, we propose an even simpler
alternative polynomial method, involving only elementary matricial and polynomial
manipulations.

3.1 Main Algorithm

First we introduce some notation. Consider an arbitrary polynomial with real
coefficients

f (s) = f0sn + f1sn−1 + · · ·+ fn,

whose degree, denoted by deg f (s), is no larger than n. Correspondingly to the
polynomial f (s), define

fff :=

 f0
...
fn

 , LLL f :=


f0 0 · · · 0

f1 f0
. . .

...
...

. . . . . . 0
fn−1 · · · f1 f0

 and UUU f :=


fn fn−1 · · · f1

0 fn
. . .

...
...

. . . . . . fn−1
0 · · · 0 fn

 .
Let JJJ be a sign matrix, defined as
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JJJ :=


(−1)n−1

. . .
−1

1

 .
The matrices LLL f , UUU f and JJJ are helpful in transforming a polynomial equation into a
system of linear equations. As we shall see, such a transformation plays an important
role in the proposed polynomial approach.

Suppose we are given an nth order plant

P(s) =
b(s)
a(s)

=
b0sn +b1sn−1 + · · ·+bn

a0sn +a1sn−1 + · · ·+an
, (5)

where a0 6= 0, and a(s) and b(s) are coprime. The following algorithm computes an
optimally robust controller

Copt(s) = argmin
C(s)

‖P(s)#C(s)‖∞.
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Algorithm 1 Optimally Robust Controller Design
Step 1: (Spectral factorization) Find a stable polynomial

d(s) = d0sn +d1sn−1 + · · ·+dn

such that
a(−s)a(s)+b(−s)b(s) = d(−s)d(s).

Step 2: (Matrix construction) Construct

HHH = JJJLLL−1
d JJJ

[
LLLbJJJ −LLLaJJJ

][LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
.

Step 3: (Eigen-computation) Find the eigenvalue of HHH whose magnitude equals
to the spectral radius ρ(HHH). Let eee be an eigenvector corresponding to this
eigenvalue1.

Step 4: (Pole placement) Compute[
ppp
qqq

]
=

[
LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
eee and

{
p(s) =

[
sn−1 sn−2 · · · 1

]
ppp

q(s) =
[
sn−1 sn−2 · · · 1

]
qqq

.

An optimal controller is given by Copt(s) =
q(s)
p(s)

.

Step 5: (Optimal robustness margin computation)

α(P(s)) =
1√

1+ρ2(HHH)
.

Notice that only basic matricial and polynomial manipulations, such as spectral
factorization, eigenvalue decomposition and matrix inversion are required in the al-
gorithm above. See Section 3.2 for an illustrative example of applying the algorithm.

Whereas Steps 2, 3, and 5 in Algorithm 1 are concerned with the optimal control
design, Steps 1 and 4 are standard and well known, as we elaborate below. Denote
by Pn the set of all the polynomials with real coefficients and of degree n. That is,
for d(s)∈Pn, it holds d(s) = d0sn+d1sn−1+ · · ·+dn with d0 6= 0. This polynomial
d(s) is said to be stable if all its roots have negative real parts.

Let the plant P(s) be given as in (5). Observe that the polynomial

a(−s)a(s)+b(−s)b(s) (6)

is self-conjugate, i.e., its conjugate coincides with itself. Consequently, if z is a root
of this polynomial, then so is −z. Together with the coprimeness of a(s) and b(s),

1 It can be shown that all the eigenvalues of HHH are real. For clarity of presentation, it is implicitly
assumed that there exists a unique eigenvalue of HHH whose magnitude is ρ(HHH). This is generically
the case. The more involved situation is discussed specifically in Section 3.3.
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it follows that this polynomial has no roots on the imaginary axis and all its roots
are symmetric about the imaginary axis. Step 1 in Algorithm 1 can be carried out
by first solving for the roots of the polynomial in (6) and then obtaining a stable
polynomial d(s) ∈Pn such that

a(−s)a(s)+b(−s)b(s) = d(−s)d(s). (7)

This process is known as the spectral factorization [Kailath, 1980, Section 3.4], [Qiu
and Zhou, 2009, Section 8.1].

Given two coprime polynomials with real coefficients p(s) and q(s), by defining

C(s) :=
q(s)
p(s)

, (8)

we know from the definition of the Gang of Four transfer matrix P(s)#C(s) that the
closed-loop poles are the roots of the characteristic polynomial

a(s)p(s)+b(s)q(s).

One way to obtain p(s) and q(s) is via the pole placement method as follows. Let
e(s)∈Pn−1 be a stable polynomial. By solving the following polynomial Diophan-
tine equation [Kailath, 1980, Section 4.5] [Qiu and Zhou, 2009, Section 3.6]

a(s)p(s)+b(s)q(s) = d(s)e(s), (9)

we obtain p(s) and q(s) with max{deg p(s),deg q(s)} ≤ n− 1. A controller C(s)
defined as in (8) then places the closed-loop poles at the roots of d(s)e(s). Such
a process is called the pole placement design, and the resulting C(s) is called a
pole placement controller. In particular, equating the coefficients in (9) yields the
following system of linear equations:[

LLLa LLLb
UUUa UUUb

][
ppp
qqq

]
=

[
LLLd
UUUd

]
eee, (10)

where the elements in ppp and qqq are the unknowns. The matrix[
LLLa LLLb
UUUa UUUb

]
is called a Sylvester’s resultant matrix [Qiu and Zhou, 2009, Section 3.6], which is a
2n-by-2n nonsingular matrix as a(s) and b(s) are coprime. By inverting this matrix
as in Step 4 of Algorithm 1, we obtain the solution to equation (9), as well as the
pole placement controller.

It is now obvious that Steps 2 and 3 of Algorithm 1 serve the purpose of
computing a partial set of the closed-loop poles, based on which the pole placement
controller resulting from Step 4 gives rise to an optimally robust controller. The
proof of this fact is deferred to Section 4.
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3.2 An Illustrative Example

Here we revisit the simple example of a double integrator and apply Algorithm 1 to
obtain an optimally robust controller.

Example 1. Let

P(s) =
1
s2 .

Objective: find an optimal controller C(s) such that ‖P(s)#C(s)‖∞ is minimized
with Algorithm 1 .

1. (Spectral factorization)
s4 +1 = d(−s)d(s).

This gives d(s) = s2 +
√

2s+1.
2. (Matrix computation) We can compute that

HHH =

[
1
√

2√
2 1

]
.

3. (Eigen-computation) The eigenvalues of HHH are 1±
√

2. The eigenvalue with the
largest magnitude is 1+

√
2 and the corresponding eigenvector satisfies[

1
√

2√
2 1

]
eee = (1+

√
2)eee.

This gives eee =
[

1
1

]
. Thus,

e(s) =
[
s 1
]

eee = s+1.

4. (Pole placement) We obtain p(s) = s+1+
√

2 and q(s) = (1+
√

2)s+1 from

[
ppp
qqq

]
=

[
LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
eee =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1

1 0√
2 1

1
√

2
0 1

[1
1

]
=


1

1+
√

2
1+
√

2
1

 .
An optimally robust controller is then given by

Copt(s) =
(1+
√

2)s+1
s+1+

√
2

.

5. (Optimal robustness margin computation)

α(P(s)) =
1√

4+2
√

2
.
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3.3 The Nongeneric Case

In Step 3 of Algorithm 1, the generic case where HHH admits a unique eigenvalue of
magnitude ρ(HHH) is dealt with. Here we mention without proof a method to handle
the singular case where HHH has multiple eigenvalues of magnitude ρ(HHH). This will
not be pursued further elsewhere in this chapter. First we introduce some notation.
For a square matrix AAA ∈ Rn×n, denote by λk(AAA), k = 1,2, . . . ,n its k-th eigenvalue
counting multiplicity, ordered according to

|λ1(AAA)|= · · ·= |λv(AAA)|> |λv+1(AAA)| ≥ · · · ≥ |λn(AAA)|.

The spectral radius of HHH, ρ(HHH), is hence |λ1(HHH)|. Let the number of the eigenvalues
of magnitude ρ(HHH) be m(HHH) := v > 1.

It can be shown using the spectral factorization relation in Step 1 of Algorithm 1
that HHH is diagonalizable and all its eigenvalues are real, hence either or both of
ρ(HHH) and −ρ(HHH) are eigenvalues of HHH. If ρ(HHH) is an eigenvalue, let E1 be the
corresponding eigenspace; otherwise E1 = {000}. Similarly, let E2 be the eigenspace
corresponding to−ρ(HHH). Then Algorithm 1 with Step 3 replaced by Step 3∗ below
yields an optimally robust controller whose order is no larger than n−m(HHH):

Step 3∗: (Eigen-computation) Find 000 6= eee∈ E1∪E2 such that the degree of e(s)
is minimized, where

e(s) =
[
sn−1 sn−2 · · · 1

]
eee.

The following example of a special all-pass system illustrates how we utilize the
algorithm when m(HHH)> 1.

Example 2. Consider the following all-pass plant

P(s) =
(s−1)(s−2)(s−3)
(s+1)(s+2)(s+3)

=
s3−6s2 +11s−6
s3 +6s2 +11s+6

.

Objective: find an optimal controller C(s) such that ‖P(s)#C(s)‖∞ is minimized
using Algorithm 1 equipped with Step 3∗ above.

1. (Spectral factorization)

d(s) =
√

2(s+1)(s+2)(s+3) =
√

2(s3 +6s2 +11s+6).

2. (Matrix computation) We can compute that

HHH =

−1 0 0
0 1 0
0 0 −1

 .
3. (Eigen-computation) The eigenvalues of HHH are 1, −1 and −1, all of which

have magnitude 1. Hence m(HHH) = n = 3. The eigenspaces corresponding to
eigenvalues 1 and −1 are, respectively,
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E1 = span

0
1
0

 and E2 = span

1 0
0 0
0 1

 .
The vector 000 6= eee ∈ E1∪E2 such that the degree of e(s) is minimized is given by

eee =

0
0
1

 , whereby e(s) = 1, and deg e(s) = 0 = n−m(HHH).

4. (Pole placement) We obtain p(s) =
√

2 and q(s) = 0 from

[
ppp
qqq

]
=


1 0 0 1 0 0
6 1 0 −6 1 0

11 6 1 11 −6 1
6 11 6 −6 11 −6
0 6 11 0 −6 11
0 0 6 0 0 −6



−1

√
2 0 0

6
√

2
√

2 0
11
√

2 6
√

2
√

2
6
√

2 11
√

2 6
√

2
0 6

√
2 11

√
2

0 0 6
√

2


0

0
1

=


0
0√
2

0
0
0

 .

Hence, an optimally robust controller is given by

Copt(s) = 0.

5. (Optimal robustness margin computation)

α(P(s)) =
1√
2
.

4 Proof of Optimality

The purpose of this section is to prove that the controller Copt(s) obtained from
Algorithm 1 is optimal, in the sense that it satisfies

Copt(s) = argmin
C(s)

‖P(s)#C(s)‖∞.

4.1 Preliminaries

Given a plant P(s) =
b(s)
a(s)

and a stable polynomial e(s), we can rewrite the spectral

factorization in (7) and the pole placement in (9) as, respectively,
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M(−s)M(s)+N(−s)N(s) = 1 and M(s)X(s)+N(s)Y (s) = 1, (11)

where

M(s) :=
a(s)
d(s)

, N(s) :=
b(s)
d(s)

, X(s) :=
p(s)
e(s)

, and Y (s) :=
q(s)
e(s)

. (12)

Based on these relations, the set of all controllers C(s) for which P(s)#C(s) is stable
is given by the Youla parametrization [Youla et al., 1976] as

S (P(s)) =
{

C(s) =
Y (s)+M(s)Q(s)
X(s)−N(s)Q(s)

: Q(s) ∈RH ∞

}
. (13)

Obviously, an optimally robust controller belongs to the set S (P(s)).
It can be shown with some algebraic manipulations [Qiu and Zhou, 2009,

Chapter 9] that

‖P(s)#C(s)‖∞ =

(
1+
∥∥∥∥P(−s)−C(s)

1+P(s)C(s)

∥∥∥∥2

∞

) 1
2

.

As a consequence,
min

C(s)∈S (P(s))
‖P(s)#C(s)‖∞

is equivalent to

min
C(s)∈S (P(s))

∥∥∥∥P(−s)−C(s)
1+P(s)C(s)

∥∥∥∥
∞

=: γ(P(s)). (14)

Furthermore, the optimal robust stability margin is

α(P(s)) =
1√

1+ γ2(P(s))
.

Later in the section, we will show that γ(P(s)) = ρ(HHH), whereby

α(P(s)) =
1√

1+ρ2(HHH)

as in Step 5 of Algorithm 1.
In the sequel, we derive an alternative form, which is easier to work with, for the

H∞ optimal control problem in (14). In particular, given the set of all stabilizing
controllers S (P(s)) in (13) and M(s), N(s), X(s), Y (s) defined in (12), we have



Robust Control against Uncertainty Quartet: A Polynomial Approach 17

γ(P(s)) = inf
C(s)∈S (P(s))

∥∥∥∥P(−s)−C(s)
1+P(s)C(s)

∥∥∥∥
∞

= inf
Q(s)∈RH ∞

∥∥∥∥M(s)[N(−s)X(s)−M(−s)Y (s)−Q(s)]
M(−s)

∥∥∥∥
∞

= inf
Q(s)∈RH ∞

‖N(−s)X(s)−M(−s)Y (s)−Q(s)‖
∞

= inf
Q(s)∈RH ∞

‖G(s)−Q(s)‖
∞
, (15)

where

G(s) := N(−s)X(s)−M(−s)Y (s) =
b(−s)p(s)−a(−s)q(s)

d(−s)e(s)
∈RL ∞, (16)

and the third equality follows from the fact that

M(s)
M(−s)

is an all-pass transfer function. Consequently, solving for an optimally robust
controller is equivalent to finding a Q(s) ∈ RH ∞ that lies the closest to G(s) ∈
RL ∞ in the L∞ norm. This special H∞ optimal control problem is a Nehari’s
problem [Nehari, 1957], [Fuhrmann, 2012, Chapter 12], which is closely related to
the partial pole placement problem introduced in what follows.

4.2 Partial Pole Placement

Definition 1. Given an nth order plant P(s) =
b(s)
a(s)

and a stable polynomial d(s) ∈

Pn obtained from the spectral factorization in (7), we say that a triplet of polyno-
mials {p(s),q(s),e(s)} solves the partial pole placement problem for λ ∈ R if it
satisfies

a(s)p(s)+b(s)q(s) = d(s)e(s),

b(−s)p(s)−a(−s)q(s) = λd(s)e(−s),

max{deg p(s),deg q(s)} ≤ deg e(s)≤ n−1.
(17)

A partial pole placement problem is distinguished from a pole placement problem
in (9), since the closed-loop poles, namely the roots of d(s)e(s), are not completely
prescribed ahead of time and need to be determined from the equations in (17). Two
questions arise naturally from this problem:

(i) What are the possible solutions to the partial pole placement problem?
(ii) How are these solutions related to the Nehari’s problem in (15)?

We answer these questions below, and in doing so complete the main part of the
derivation for the optimal controller from Algorithm 1. We begin with Question (ii).



18 Di Zhao, Chao Chen, Sei Zhen Khong and Li Qiu

Recall the expression of G(s) in (16). In a similar manner, define a series of
transfer functions in RL ∞ for k = 1,2, . . . ,n by

Gk(s) =
b(−s)pk(s)−a(−s)qk(s)

d(−s)ek(s)
, (18)

where {pk(s),qk(s),ek(s)} is a solution of (17) with respect to λk and ek(s) has
exactly k− 1 anti-stable roots. In particular, e1(s) is stable. Recall that the e(s) ∈
Pn−1 in (16) is required to be a stable polynomial. Henceforth, let e(s) = e1(s),
whereby G(s) = G1(s). Denote by RL [k]

∞ ⊂ RL ∞ the set of all the transfer
functions that have at most k− 1 anti-stable poles. Specifically, RL [1]

∞ = RH ∞.
Similarly to (15), consider the series of optimization problems

inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞
, k = 1,2, . . . ,n. (19)

When k = 1, the optimization problem reduces to (15). As k increases, the en-
largement of the feasible set of the kth optimization problem is more than enough
to compensate for the additional anti-stable pole in Gk(s). As a result, for k =
1,2, . . . ,n−1, we have

inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞
≥ inf

Qk+1(s)∈RL
[k+1]
∞

‖Gk+1(s)−Qk+1(s)‖∞
. (20)

The following lemma shows that the series of optimization problems above admit
analytic solutions.

Lemma 1. Given Gk(s) as defined in (18), we have

inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞
= |λk|,

where the infimum is achieved when Qk(s) = 0.

Proof. Since {pk(s),qk(s),ek(s)} is a solution of (17) with respect to λk, it follows
that

Gk(s) =
b(−s)pk(s)−a(−s)qk(s)

d(−s)ek(s)
= λk

d(s)ek(−s)
d(−s)ek(s)

.

Consequently,

inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞ ≤ ‖Gk(s)−0‖∞ =

∥∥∥∥λk
d(s)ek(−s)
d(−s)ek(s)

∥∥∥∥
∞

= |λk|, (21)

where the fact that
d(s)ek(−s)
d(−s)ek(s)

is all-pass has been used. We show below
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inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞ ≥ |λk|,

from which it follows that equality is achieved when Qk(s) = 0.
Let ek(s) = fk(s)gk(−s), where fk(s) and gk(s) are stable polynomials and

deg gk(s) = k−1. For an arbitrary transfer function Qk(s) ∈RL [k]
∞ , we can write

Qk(s) =
hk(s)

hk(−s)
Q̃k(s),

where hk(s) ∈Pk−1 is stable and Q̃k(s) ∈RH ∞. Define

Uk(s) :=
fk(s)hk(−s)

d(s)
,

which is an element in H2 since d(s) is stable and

deg fk(s)+deg hk(s)≤ deg ek(s)< deg d(s).

Observe that

Gk(s)Uk(s) = λk
hk(−s) fk(−s)gk(s)

d(−s)gk(−s)
∈RH ⊥

2

and

‖Gk(s)Uk(s)‖2 =

|λk|
∥∥∥∥hk(−s) fk(−s)gk(s)

d(−s)gk(−s)

∥∥∥∥
2
= |λk|

∥∥∥∥hk(−s) fk(−s)
d(−s)

∥∥∥∥
2
= |λk|‖Uk(s)‖2.

On the other hand, we have

Qk(s)Uk(s) =
fk(s)hk(s)

d(s)
Q̃k(s) ∈H2.

Therefore,

‖Gk(s)−Qk(s)‖∞ ≥
‖Gk(s)Uk(s)−Qk(s)Uk(s)‖2

‖Uk(s)‖2

=

√
‖Gk(s)Uk(s)‖2

2

‖Uk(s)‖2
2

+
‖Qk(s)Uk(s)‖2

2

‖Uk(s)‖2
2

=

√
|λk|2 +

‖Qk(s)Uk(s)‖2
2

‖Uk(s)‖2
2

≥ |λk|,

as required. ut
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Below we provide an answer to Question (i). Lying at the core of the answer is
the matrix HHH defined in Step 2 of Algorithm 1. First recall the notation introduced
at the start of Section 3.1.

Lemma 2. A triplet of polynomials {p(s),q(s),e(s)} is a solution to the partial pole
placement problem in Definition 1 with respect to a λ ∈ R if, and only if, {ppp,qqq,eee}
satisfies

HHHeee = (−1)n
λeee

and [
ppp
qqq

]
=

[
LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
eee, (22)

where

HHH := JJJLLL−1
d JJJ

[
LLLbJJJ −LLLaJJJ

][LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
.

Proof. Equating the coefficients of the polynomials on both sides of the equations
in (17) results in the following two systems of linear equations:[

LLLa LLLb
UUUa UUUb

][
ppp
qqq

]
=

[
LLLd
UUUd

]
eee,[

(−1)nJJJ
JJJ

][
LLLb −LLLa
UUUb −UUUa

][
JJJ

JJJ

][
ppp
qqq

]
= λ

[
LLLd
UUUd

]
JJJeee.

(23)

Since a(s) and b(s) are coprime, the matrix[
LLLa LLLb
UUUa UUUb

]
is invertible. Thus, from (23), we obtain (22) and[

JJJ
(−1)nJJJ

][
LLLb −LLLa
UUUb −UUUa

][
JJJ

JJJ

][
LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
eee = (−1)n

λ

[
LLLd
UUUd

]
JJJeee. (24)

There are a total of 2n linear equations involving the elements of eee in (24). By
equating the coefficients in the spectral factorization in (7), one may show that the
first n equations are identical to the last n ones after some algebraic manipulations.
Hence it suffices to consider the first n rows of (24):

JJJ
[
LLLbJJJ −LLLaJJJ

][LLLa LLLb
UUUa UUUb

]−1 [LLLd
UUUd

]
eee = (−1)n

λLLLdJJJeee.

Since deg d(s) = n, or equivalently, d0 6= 0, LLLd is invertible. Left-multiplying both
sides of the equation above by JJJLLL−1

d yields
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HHHeee = (−1)n
λeee.

In other words, {(−1)nλ ,eee} is an eigenpair of HHH. ut

4.3 Optimally Robust Controller

Based on the previous development, we state the main result as follows.

Theorem 2. The controller Copt(s) defined in Algorithm 1 is optimally robust, in the
sense that

Copt(s) = argmin
C(s)∈S (P(s))

∥∥∥∥P(−s)−C(s)
1+P(s)C(s)

∥∥∥∥
∞

= argmin
C(s)∈S (P(s))

‖P(s)#C(s)‖∞.

Moreover, the optimal robustness margin is

α(P(s)) =
1√

1+ρ2(HHH)
.

Proof. By Lemma 1 and (20), we have for k = 1,2, . . . ,n−1,

|λk|= ‖Gk(s)‖∞ = inf
Qk(s)∈RL

[k]
∞

‖Gk(s)−Qk(s)‖∞

≥ inf
Qk+1(s)∈RL

[k+1]
∞

‖Gk+1(s)−Qk+1(s)‖∞
= ‖Gk+1(s)‖∞ = |λk+1|,

where

Gk(s) :=
b(−s)pk(s)−a(−s)qk(s)

d(−s)ek(s)

is as defined in (18), {pk(s),qk(s),ek(s)} is a solution to the partial pole placement
problem in Definition 15 with respect to λk and ek(s) has exactly k− 1 anti-stable
roots. Furthermore, by Lemma 2, each |λk| is the magnitude of an eigenvalue of HHH
defined in Step 2 of Algorithm 1. In particular, |λ1|= ρ(HHH). Since e1(s) is stable, it
follows from (15) that

γ(P(s)) = inf
C(s)∈S (P(s))

∥∥∥∥P(−s)−C(s)
1+P(s)C(s)

∥∥∥∥
∞

= inf
Q(s)∈RH ∞

‖G1(s)−Q(s)‖
∞

= inf
Q1(s)∈RL

[1]
∞

‖G1(s)−Q1(s)‖∞

= ‖G1(s)‖∞

= |λ1|= ρ(HHH).
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Therefore,

α(P(s)) =
1√

1+ γ2(P(s))
=

1√
1+ρ2(HHH)

,

and again by Lemma 2, Steps 3 and 4 of Algorithm 1 yield a triplet of polynomials
{p(s), q(s),e(s)} satisfying p(s) = p1(s), q(s) = q1(s), and e(s) = e1(s), whereby

G1(s) :=
b(−s)p1(s)−a(−s)q1(s)

d(−s)e1(s)
=

b(−s)p(s)−a(−s)q(s)
d(−s)e(s)

.

By defining Copt(s) :=
q(s)
p(s)

, we have

‖G1(s)‖∞ =

∥∥∥∥b(−s)p(s)−a(−s)q(s)
d(−s)e(s)

∥∥∥∥
∞

=

∥∥∥∥d(−s)a(s)
a(−s)d(s)

b(−s)p(s)−a(−s)q(s)
d(−s)e(s)

∥∥∥∥
∞

=

∥∥∥∥P(−s)−Copt(s)
1+P(s)Copt(s)

∥∥∥∥
∞

,

where the first equality in (17) has been used. In other words, the Copt(s) obtained
in Algorithm 1 is optimally robust. ut

5 Case Study: Control of a USUAL Inverted Pendulum

The inverted pendulum system has been one of the most popular control education
apparatus since the 1950s. The system has been widely utilized for verifying
the effectiveness of stabilizing algorithms due to its unstable and under-actuated
properties. The system mimics the human stick balancing game: balancing a long
stick upward on our finger tip. In the game, our fingers move in a horizontal plane
and the stick can fall in all directions. In this scenario, the state of the stick is
observed directly by the human vision. Unlike the game, the inverted pendulum
in this case study, whose cart moves linearly along a straight rail and rod can only
fail either to the front or to the back of the cart, is a simplified one-dimensional
version of the game. See Fig. 5 for an illustration.
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Fig. 5 A real inverted pendulum.

The human stick balancing game motivates us to reconsider certain issues of sta-
bilizing the inverted pendulum. Conventionally, the inverted pendulum is equipped
with two sensors, i.e., the cart position sensor and the rod angle sensor. The feedback
stabilization of the inverted pendulum is usually done by using the measured two
sensor outputs. If we recall the stick balancing game, it is highly unlikely that
our eyes are focused on the finger position and the stick angle simultaneously.
What do we really look at when we try to balance a stick using our hand? The
researchers now tend to believe that the player in the game looks at the top end of
the stick when the player tries to move the fingers [Qiu and Zhou, 2009], [Leong
and Doyle, 2016], [Doyle et al., 2016]. To mimic this human behavior, we utilize
a single position sensor, which measures the horizontal position of the upper tip
of the rod, to achieve the stabilization of the inverted pendulum. Clearly, such an
inverted pendulum system would be not only under-actuated, but also under-sensed.
The control of such a system is much more challenging compared with controlling
an inverted pendulum by using two measured outputs.

In this section, the output feedback stabilization of an under-sensed and under-
actuated linear (USUAL) inverted pendulum, which has only one position sensor
and one force actuator, is investigated. We successfully stabilize this USUAL
inverted pendulum without sophisticated tuning. The optimally robust controller
introduced earlier is demonstrated to be effective. To the best of our knowledge, this
is the first successful experimental study on controlling a linear inverted pendulum
by using a single position sensor measurement.

5.1 System Model

As shown in Fig. 6, a standard linear inverted pendulum consists of a cart and a
rod. The cart, with a mass Mc, slides on a stainless shaft and is equipped with a
linear motor. The rod, attached with a small ball, is mounted on the cart. The axis
of rotation of the rod is perpendicular to the direction of the motion of the cart. The
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rod, of length L, has an evenly distributed mass Mp, and the small ball with a mass
Mb can be regarded as a point mass. The system has two degrees of freedom. One is
from the horizontal motion of the cart, and the other is from the rotational motion of
the rod on the plane. Nevertheless, only the horizontal motion of the cart is actuated
by the force f (t) applied to the cart, and only the horizontal position of the tip of the
rod z(t) is measured by a single position sensor. Consequently, Fig. 6 indeed shows
the schematic diagram of the USUAL inverted pendulum.

L

Cart

θ9

-z
-x

-f

Fig. 6 A schematic diagram of the USUAL inverted pendulum with input f (t) and output z(t).

The differential equation model [Qiu and Zhou, 2009, Section 2.10 and Sec-
tion 3.9] of the USUAL inverted pendulum is given by

f (t) = M1ẍ(t)−M2Lθ̈(t)cosθ(t)+M2Lθ̇
2(t)sinθ(t),

0 = M3Lθ̈(t)−M2ẍ(t)cosθ(t)−M2gsinθ(t),

z(t) = x(t)−Lsinθ(t)

(25)

where f (t) is the system input, z(t) is the system output, x(t) is the cart position,
θ(t) is the pendulum angle, g is the gravitational acceleration, M1 = Mp +Mc +
Mb, M2 = Mp/2+Mb, and M3 = Mp/3+Mb are three constant coefficients of the
practical system. The system given in (25) is highly nonlinear. Our control objective
is to stabilize the rod around its upward direction, which is an unstable equilibirium
point. Linearizing the system around the equilibrium point x(t) = 0, ẋ(t) = 0, θ(t) =
0, θ̇(t) = 0 yields

f (t) = M1ẍ(t)−M2Lθ̈(t),

0 = M3Lθ̈(t)−M2ẍ(t)−M2gθ(t),

z(t) = x(t)−Lθ(t)

together with the transfer function P(s) from F(s) to Z(s) as

P(s) =
(M3/M2−1)Ls2−g

M1s2 [(M3/M2−M2/M1)Ls2−g]
. (26)

Plugging the actual values of the parameters given in Table 1 into (26) results in
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Table 1 Parameters of the USUAL inverted pendulum in our experimental set-up.

Parameter Value

Mass of rod (Mp) 0.07 kg
Mass of the cart (Mc) 1.42 kg
Mass of the ball (Mb) 0.05 kg
Gravitational acceleration (g) 9.8 m/s2

Length of the rod (L) 0.335 m

P(s) =
−0.1104s2−22.52

s2 (s2−36.23)
. (27)

This is a highly unstable system with poles at 0, 0, ±6.019 and zeros at ± j14.28. It
is impossible to stabilize this system by using PD or PID control.

5.2 Optimally Robust Stabilization

In real applications, before we apply the design algorithm to P(s), generally, loop-
shaping for the plant P(s) is carried out to help improve the control performance.
The purpose of shaping the plant is to balance the system input and output possibly
using a frequency dependent weighting function. In our experimental set-up, a
simple weighting constant is demonstrated to be sufficient.

Specifically, for the USUAL inverted pendulum, first multiply the original plant
P(s) given in (27) by the simplest weighting function, i.e., a constant W , to form a
new plant P̂(s) =WP(s), then carry out the optimally robust stabilization algorithm
to obtain the resulting controller Ĉ(s). Note that the loop transfer function is given
by

L(s) = P̂(s)Ĉ(s) = P(s)WĈ(s) = P(s)C(s)

where C(s) = WĈ(s). In other words, to guarantee the same loop transfer function
for the original P(s), we need to absorb the weighting constant W into the controller
C(s). As a result, C(s) is the optimally robust controller that we use in reality for the
original plant P(s).

The shaping constant W should be carefully tuned in actual applications. In our
real USUAL inverted pendulum set-up, we find that a large range of W is applicable,
and we set W = 400 for our experiment.

In the following, we make use of the main algorithm to design an optimally
robust stabilizing controller for the real USUAL inverted pendulum.

Example 3 (USUAL Inverted Pendulum). Consider the shaped plant

P̂(s) =WP(s) =
400(−0.1104s2−23.52)

s4−36.23s2 .
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Following Algorithm 1, we try to find the optimal Ĉ(s) such that ‖P̂(s)#Ĉ(s)‖∞

is minimized.

1. (Spectral factorization)

(s4−36.23s2)2 +4002(−0.1104s2−23.52)2 = d(−s)d(s).

This yields d(s) = s4 +27.21s3 +334.0s2 +2335s+9409.
2. (Matrix computation) We can compute that

HHH =


−2.073 −0.3017 −2.962×10−2 −1.476×10−3

−45.48 −6.136 −0.5042 −1.055×10−2

−425.9 −55.28 −3.755 1.115×10−2

−2839 −278.7 −13.89 0.3075

 .
3. (Eigen-computation) The four eigenvalues of HHH are −13.20, 1.977, −0.5058

and 7.574× 10−2. The one with the largest magnitude is ρ(HHH) = 13.20 and its
corresponding eigenvector is

eee =
[
−1.315×10−3 −2.416×10−2 −0.1994 −0.9796

]T
.

This gives

e(s) =
[
s3 s2 s 1

]
eee =−1.315×10−3s3−2.416×10−2s2−0.1994s−0.9796.

4. (Pole placement) The pole placement equation follows that

(s4−36.23s2)p(s)+400(−0.1104s2−23.52)q(s) = d(s)e(s).

Solving the above equation gives

p(s) = s3 +45.57s2 +438.6s+9834,

q(s) =−13.20s3−116.8s2−336.5s−744.8.

Therefore, the pole placement controller is given by

Ĉ(s) =
q(s)
p(s)

=
−13.20s3−116.8s2−336.5s−744.8

s3 +45.57s2 +438.6s+9834
.

Absorbing W yields the desired optimally robust controller in practical use

C(s) =WĈ(s) =
400(−13.20s3−116.8s2−336.5s−744.8)

s3 +45.57s2 +438.6s+9834
. (28)

5. (Optimal robustness margin computation) We have

α(P̂(s)) = 7.552×10−2.
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5.3 Simulation and Experimental Results

To verify the effectiveness of the design algorithm, we first show the simulation
results for the nonlinear model given in (25) together with the optimally robust
controller C(s) designed in (28). Given the initial conditions x(t) = 0.01 m, ẋ(t) =
0.002 m/s, θ(t) = 4π/180 rad, θ̇(t) = 0.5π/180 rad/s, the stabilization simulation
results are shown in Fig. 7.

The closed-loop system starts with the initial conditions, and the simulation
results show that the output z(t), the cart position x(t) and pendulum angle θ(t)
converge to zero quickly when t > 2 s. This validates the effectiveness of the
designed controller from a theoretical perspective.
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Fig. 7 The nonlinear simulation of the USUAL inverted pendulum: stabilization results of the
output z(t), cart position x(t) and pendulum angle θ(t) with the initial conditions x(t) = 0.01 m,
ẋ(t) = 0.002 m/s, θ(t) = 4π/180 rad, θ̇(t) = 0.5π/180 rad/s.

In the following, we implement the optimally robust stabilizing controller C(s)
given in (28) to the real USUAL inverted pendulum. The experiment is carried out
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as follows. In the beginning, we show the stabilized behaviors of z(t), x(t) and θ(t)
of the USUAL inverted pendulum. Then, we excite the system by knocking the
pendulum gently on the top as performance testing. In the end, the behaviors of z(t),
x(t) and θ(t) of the system against the knock are presented.

The real-time experimental data of three variables z(t), x(t) and θ(t) together
with the performance testing are illustrated by Fig. 8. When t < 9.7 s, the output
z(t) is within a small range [−0.04 m, 0.02 m], and from x(t) and θ(t), we know
that the real USUAL inverted pendulum is indeed stabilized. Moreover, both θ(t)
and x(t) vary within a small range. The results indicate the closed-loop system is
running with satisfactory stabilized behaviors.

0 5 10 15 20
-0.06

-0.04

-0.02

0

0.02

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

Fig. 8 The stabilization of the real USUAL inverted pendulum: results of the output z(t), cart
position x(t) and pendulum angle θ(t). The circles represent the rough time t = 9.7 s when we
excite the system by hitting the pendulum on the top.

In order to test the system performance, we excite the system by hitting the
pendulum lightly on the top when the designed controller is in operation. As shown
in Fig. 8, the circles represent the rough time t = 9.7 s when we excite the system.
The results show that both x(t) and θ(t) restore quickly to their stabilized behaviors.
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In the meantime, z(t) is almost free of the impact of the hit since z(t) is the controlled
output. This validates the effectiveness of the designed controller from a practical
point of view.

By simply shaping the USUAL inverted pendulum with a constant to balance
the system input and output, the optimally robust controller can be implemented
successfully without further complicated tuning. We conclude that the optimally
robust control is demonstrated to be effective in the control of the USUAL inverted
pendulum.

6 Conclusion

To characterize system uncertainties of different types and from multiple sources,
we have proposed a special uncertainty model, namely, the uncertainty quartet.
The uncertainty quartet combines and generalizes several commonly adopted uncer-
tainty models, such as the additive, the multiplicative, the relative and the feedback
uncertainties. In correspondence with the uncertainty quartet, a robust stability
condition was derived, resulting in a robust stability margin in terms of the Gang of
Four transfer matrix. An optimally robust controller, maximizing the robust stability
margin, was obtained through a proposed polynomial approach. This approach
involves only basic matricial and polynomial manipulations. Moreover, the math-
ematical tools used in developing this polynomial approach are also rudimentary,
e.g., the matrix analysis and basic H∞ control theory. The clarity and simplicity
of the polynomial approach may be beneficial to the popularization of the robust
control theory for engineering applications.

The optimally robust controller was demonstrated to be effective by the case
study on the USUAL inverted pendulum, a highly nonlinear and unstable single-
input single-output system. This system is commonly seen in laboratories and
familiar to most of people in the field of control. It is nontrivial to control such a
system with simple methods, such as, PID control. As a result, the USUAL inverted
pendulum may be regarded as a benchmark to validate the effectiveness of control
methods in practice. For the purpose of education, the control of this system may
serve as a qualifying test for control system designers and engineers.
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