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Abstract— In this paper, we study the robust stability of
a networked control system (NCS) with the communication
channels described by cascaded two-port networks. Distortions
and interferences are taken into account at each two-port
network between a pair of relays during the communication.
Dynamic uncertainties are modeled within the cascaded two-
port networks, where four types of uncertainties appear at one
two-port network and we call them the uncertainty quartet.
Specifically, we consider frequency-wise bounded uncertainties
in transmission matrices of two-port networks. A necessary and
sufficient condition for the robust stability of the NCS is given
in the form of an “arcsin” inequality, which states that the NCS
will be stable whenever the uncertainties are well bounded. Key
ideas of the result are based on the geometric insights into the
graphs of systems and key techniques are based on the analysis
of subspaces.

I. INTRODUCTION

Uncertainties are everywhere. In accordance with different
application scenarios, various types of uncertainty models
have been proposed, such as dynamic uncertainties [1], [2],
parametric uncertainties [2] and gap-type uncertainties [3]–
[7]. A stable dynamic uncertainty is usually measured by
its H∞ norm, which is defined as the maximum amplitude
of its transfer function on the imaginary axis. With this
measure, several widely used uncertainty models have been
proposed, including the additive/multiplicative uncertainties
[1], the feedback uncertainty [2], the uncertainty quartet [8],
[9] and so on. In terms of gap-type uncertainties, the gap
(pointwise gap or ν-gap) metric defines a distance between
the graphs of two linear time-invariant (LTI) systems, hence
induces a measure of uncertainty.

Uncertainties in this study are assumed to be present
within communication channels. Practically in most systems,
the signals are transmitted through imperfect communication
channels. Since the system stability and control performance
heavily rely on the quality of communication channels,
one should pay serious attention to possible communica-
tion uncertainties when modeling a feedback system, more
specifically, a networked control system (NCS). An NCS
differs from a standard closed-loop system as the informa-
tion exchanged between the plant and controller is through
communication networks [10]. The communication channels
in an NCS can be modeled in a various ways so as to
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Fig. 1: A standard closed-loop system.

...

Fig. 2: An NCS with cascaded two-port connections.

reveal actual situations. In this study, we give a two-port
NCS model by extending the standard closed-loop system
(Fig. 1) to the feedback system with cascaded two-port
connections (Fig. 2). Based on the architecture of the two-
port NCS, we measure the dynamic uncertainties, which are
frequency-wise bounded, in the transmission matrices of the
two-port networks. That is, the uncertainties are bounded by
frequency-wise weighting functions differently at each two-
port network. This uncertainty model applies to the situations
when the plant and the controller cannot communicate di-
rectly and the signals can only pass through communication
networks with several relays. Some direct motivating exam-
ples include satellite networks [11], wireless sensor networks
[12] and other large-scale networks with multiple routing.
Specifically, each sub-system between a pair of neighbouring
relays represents a communication channel, which involves
not only multiplicative distortions on the transmitted signal
itself but additive interferences caused by the signal in the
reverse direction. This phenomenon is usually encountered
in a bidirectional wireless network subject to channel fading
or under malicious attacks [13]. We wish to mention that
instead of bounding the dynamic uncertainties uniformly
with the H∞ norm as in [8], [9], we bound the uncer-
tainties frequency-wise because in many circumstances, we
have prior knowledge about the uncertainties. For instances,
we have estimations on the uncertainties in communication
channels from pilot sequences or environment detection [14].
Moreover, stability conditions concerning the frequency-wise
bounded uncertainties will generalize the results in [9].

So far, we have presented the architecture of our two-port
NCS model and described the robust stabilization problem,
where the uncertain cascaded two-port networks play a
crucial role. A two-port network is not a new concept and



has been studied over decades for different purposes. It
was first introduced in electrical circuit theory [15]. Later,
it was borrowed to characterize an LTI system with a
chain-scattering representation in [16]. In the application of
teleoperation in robotics, the two-port networks are used to
model communication blocks between the human operator
and the environment [17]. Such representations of two-
port networks have also been used for studying feedback
robustness from the perspective of the ν-gap metric [18].
Recently, approaches based on the two-port network to
modeling communication channels in a networked feedback
system are studied in [8] and [9].

The main contribution of our study is a concise result
on analysing the stability of a feedback system with cas-
caded communication uncertainties. As we know, a general
approach to handling the robust stabilization problem with
multiple sources of uncertainties is through µ analysis, which
is computationally difficult and even NP hard in the case
of multiple block-diagonal uncertainties [1], [19]. Actually,
we can avoid these difficulties by investigating the special
structures of the two-port networks and taking advantage of
geometric insights into the angles and rotations of subspaces.

It is worth noting that there are previous works on robust
stabilization of NCSs with special communication architec-
tures and various uncertainty descriptions. For example, [17]
considers teleoperation of robots through two-port commu-
nication networks with time delay, [20] considers a plant
with parametric uncertainties over networks subject to packet
loss, [21] considers a plant with polytopic uncertainties in its
coefficients over a communication channel subject to channel
fading and so on. The main differences of this work from the
previous works are that we model the dynamic uncertainties
using uncertainty quartets and bound them in a frequency-
wise manner.

The rest of the paper is organized as follows. In Section II,
we introduce the notation system and the model of cascaded
two-port networks. In Section III, we state the main theorem
of this study. In Section IV, we conclude this study and show
possible extensions of the results.

II. PROBLEM FORMULATION

A. Notation

Let F = R or C be the real or complex field and Fn be
the linear space of n-dimensional vectors over the field F.
For matrix A ∈ Fm×n, its conjugate transpose is denoted by
A∗ and its k-th singular value is denoted by σk(A), for k =
1, 2, . . . ,min{m,n}, in a nonincreasing order. The largest
singular value is specially denoted as σ̄(A) := σ1(A), and
the smallest is denoted as σ(A) := σmin{m,n}(A). The range
of A is denoted as R(A).

We assume that every system in this paper is continuous-
time LTI system represented by its Laplace transfer matrix.
The symbol s of transfer matrices may be omitted for
simplicity. Denote by H2 (H∞) the standard Hardy 2-spaces
(∞-spaces). Let RH∞ be the set consisting of all real
rational members of H∞. Denote by P the field of real
rational transfer functions. For transfer matrix P ∈ Pm×n,

its conjugate is denoted as P∼(s) = PT (−s). We say a
transfer matrix P ∈ Pm×n is stable if P ∈ RHm×n

∞ , where
the superscripts may be omitted for simplicity if it can be
inferred from contexts.

Two transfer matrices M and N in RH∞ are (right)
coprime if there exist transfer matrices X and Y in RH∞
such that

XM + Y N = I.

It is known [22] that every P ∈ Pm×n admits a right coprime
factorization:

P = NM−1,

where M,N ∈ RH∞. Later, when we write P = NM−1,
we always assume M,N are right coprime.

For a possibly unstable system P , assume its input as u
and its output as y, then its graph is defined by the following
set:

GP :=

{[
u
y

]
: u ∈ H2, y = Pu ∈ H2

}
.

Following some simple argument, we obtain that

GP =

[
M
N

]
H2,

where
[
M
N

]
is called the graph symbol of P .

The standard closed-loop system in Fig. 1 is denoted as
[P,C], where P ∈ Pp×m represents the plant and C ∈
Pm×p the controller. Let n := m+ p.

Under the mild condition that [P,C] is well-posed, i.e.,
I−CP has full normal rank, the well-known “Gang of Four”
transfer matrix [23] can be represented as

GoF(P,C) =

[
I
P

]
(I − CP )−1

[
I −C

]
.

The closed-loop system [P,C] is said to be stable if
GoF(P,C) is stable, or GoF(P,C) ∈ RHn×n

∞ . The quantity
‖GoF(P,C)‖−1∞ is called the robust stability margin of a
stable closed-loop system [P,C].

B. Two-Port Networks as Communication Channels

As mentioned, we utilize the two-port networks to char-
acterize cascaded bidirectional communication channels with
uncertainties. What is a two-port network? How to introduce
uncertainties into the networks? We answer the questions in
this part. First, we briefly introduce the two-port NCS model,
which mostly follows from [9]. The network N in Fig. 3a
has two external ports, with one port composed of v, w and
the other of u, y, which is the reason it is called a two-port
network. A two-port network N has various representations,
from which we choose the transmission type representation.
Define the transmission matrix T and the corresponding
input-output relation as

T =

[
T11 T12
T21 T22

]
and

[
v
w

]
= T

[
u
y

]
. (1)



(a) A single two-port network.

(b) A one-stage two-port connection.

Fig. 3: Two-port network N .

When the communication channel is perfect, i.e., commu-
nication without distortion or interference, the transmission
matrix is

T =

[
Im 0
0 Ip

]
.

If the bidirectional channel admits both distortions and
interferences, we can assume the transmission matrix to be

T = I + ∆ =

[
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
,

where ∆ =

[
∆÷ ∆−
∆+ ∆×

]
∈ RH∞.

The subscripts ÷,−,+,× of ∆ representing different
types of uncertainties are firstly used in [24]. The four-block
transfer matrix ∆ is the uncertainty quartet [9]. As shown in
Fig. 3b, we connect a two-port network N to the plant P
and denote the transmission matrix of N as T = I + ∆. It
follows from [9] that a perturbed plant P̃ from v to w can
be determined by a linear fractional transformation (LFT) as
follows:

P̃ = LFT
([
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
, P

)
(2)

= [(Ip + ∆×)P + ∆+][Im + ∆÷ + ∆−P ]−1.

Fig. 4 is the diagram showing how the uncertainties play
different roles on perturbing the nominal plant P .

We will frequency-wise bound the uncertainty quartet by
a scalar weighting function W ∈ RH∞, i.e., σ̄[∆(jω)] ≤
|W (jω)| for every ω ∈ R. It applies to the scenario when we
have priori knowledge on the uncertainties ∆k based on the
frequency contents. For example, when we study a wireless
communication channel, the frequencies that are occupied
mostly will tend to suffer more interferences and some other
frequencies may have better performance.

We have shown how to analyse one-stage two-port net-
work. In order to analyse the cascaded two-port networks,
we investigate the graphs of the plant and controller simul-
taneously. As illustrated in Fig. 2, the plant P = NM−1

and controller C = V U−1 communicate with each other
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Fig. 4: Plant with the uncertainty quartet.
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Fig. 5: Equivalent closed-loop system.

through cascaded two-port networks. Considering the input
and output of P , we can represent every element in the graph
of P using its graph symbol as follows:[

u
y

]
=

[
M
N

]
x,

for every x ∈ H2.
Focusing on the k-th two-port network, we can equivalent-

ly transform the diagram in Fig. 2 to that in Fig. 5. If the k-th
stage of the network admits an uncertainty ∆k ∈ RH∞, then
the transmission matrix is given as Tk = I + ∆k. Signals in
Fig. 5 admit the following relations:[
uk
yk

]
=

 k∏
j=1

Tk+1−j

[u
y

]
=

 k∏
j=1

(I + ∆k+1−j)

[u
y

]
,

[
vk
wk

]
=

 l∏
j=k+1

T−1j

[v
w

]
=

 l∏
j=k+1

(I + ∆j)
−1

[v
w

]
.

With these relations, we can determine the equivalent plants
P̃k and equivalent controllers C̃k from their graphs.

The stability of the NCS is defined with an input-output
manner, as follows:

Definition 1. The NCS in Fig. 5 is said to be stable if for all
input signals {pk}lk=1 and {qk}lk=1 ∈ H2, it holds that the
signals on all ports, namely, {uk}lk=1, {yk}lk=1, {vk}lk=1

and {wk}lk=1 are in H2.



III. ROBUST STABILITY OF TWO-PORT NCS
Our main result is a necessary and sufficient condition for

the networked feedback system to be robustly stable with
frequency-wise bounded uncertainties.

Theorem 1. Assume the nominal system [P,C] is stable and
Wk ∈ RH∞. Then the NCS in Fig. 2 is robustly stable for
all ∆k ∈ RH∞ with σ̄[∆k(jω)] ≤ |Wk(jω)|, ∀ω ∈ R,
k = 1, 2, . . . , l if and only if for every ω ∈ R, it holds

l∑
k=1

arcsin |Wk(jω)| < arcsin{σ̄[GoF(P,C)(jω)]}−1. (3)

Similar to the stability margin we define in Section II,
here we have {σ̄[GoF(P,C)(jω)]}−1 as the frequency-wise
stability margin. The larger the margin is at some frequency
ω, the more robust the feedback system will be against the
uncertainties at that frequency.

A similar result is given in [9], which states that given
rk ∈ [0, 1), the two-port NCS is stable for all ∆k ∈ RH∞
with ‖∆k‖∞ ≤ rk if and only if

l∑
k=1

arcsin rk < arcsin ‖GoF(P,C)‖−1∞ . (4)

Actually, Theorem 1 generalizes the above result, which can
be seen by taking Wk = rk ∈ [0, 1) in Theorem 1 and taking
minimum at the right side of equation (3) over ω ∈ R.

The full proof of the main theorem is omitted due to the
space limitation.

IV. CONCLUSION

We propose an NCS model with frequency-wise bounded
uncertainty quartets in cascaded two-port communication
channels. This model fits well the situation when we have
prior knowledge on the transmission uncertainties. A neces-
sary and sufficient condition is given, in terms of frequency-
wise bounds Wk ∈ RH∞, for the NCS to be robustly stable.
We may extend the current work to include plant/controller
uncertainties.
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