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Abstract— A networked control system (NCS) consisting of
cascaded two-port communication channels between the plant
and controller is modeled and analyzed. It is shown that the
robust stability of the two-port NCS can be guaranteed when
the nonlinear uncertainties in the transmission matrices are
sufficiently small in norm. The stability condition, given in the
form of “arcsin” of the uncertainty bounds, is both necessary
and sufficient.

I. INTRODUCTION

Feedback is widely used for handling modeling uncertain-
ties in the area of systems and control. Within a feedback
loop, communication between the plant and controller plays
an important role in that the achieved control performance
and robustness heavily rely on the quality of communication.
In practice, communication can never be ideal due to the
presence of channel distortions and interferences. In this
study, we analyze the robust stability of a feedback system
involving bidirectional uncertain communication modeled by
cascaded two-port networks.

Most control systems can be regarded as structured net-
works with signals transmitted through channels powered by
various devices, such as sensors or satellites. A networked
control system (NCS) differs from a standard closed-loop
system in that the information is exchanged through a
communication network [1]. The presence of such a network
may introduce disturbances to a control system and hence
significantly compromise its performance.

In this study, we introduce an NCS model, extending
the standard linear time-invariant (LTI) closed-loop system
(Fig. 1) to the feedback system with cascaded two-port
connections (Fig. 2). We assume that the controller and plant
are LTI while the two-port networks involve nonlinear pertur-
bations on their transmission matrices. In terms of commu-
nication uncertainties, we model the transmission matrices
as T = I + ∆, where ∆ is a bounded nonlinear operator.
Our formulation of robust stabilization problem is mainly
motivated by the application scenario of stabilizing a feed-
back system where the plant and controller do not possess
an ideal communication environment and their input-output
signals can only be sent through communication networks
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with several relays, as in, for example, teleoperation systems
[?], satellite networks [?], wireless sensor networks [?] and
so on. Moreover, each sub-system between two neighbouring
relays, representing a communication channel, may involve
not only multiplicative distortions on the transmitted signal
itself but also additive interferences caused by the signal
in the reverse direction, which is usually encountered in a
bidirectional wireless network subject to channel fading or
under malicious attacks [2].

Two-port networks are not a new concept and have been
studied for decades for different purposes. Historically, two-
port networks were first introduced in electrical circuits
theory [3]. Later on they were utilized to represent LTI sys-
tems in the so-called chain-scattering formalism [4], which
is essentially a two-port network. Two-port representations
have also been used for studying feedback robustness from
the perspective of the ν-gap metric [?]. Recently, approaches
based on the two-port network to modeling communication
channels in a networked feedback system is studied in [5]
and [?]. There, uncertain two-port connections are used to
introduce channel uncertainties, based on which we propose
our cascaded two-port communication model with nonlinear
perturbations in this paper.

One of the main contributions of our study is a clean
result for analyzing the stability of a networked feedback
system with nonlinear uncertainties in the cascaded two-port
networks. A general approach to robust stabilization of LTI
systems with structured uncertainties is µ analysis, which is
known to be computationally intractable in general in the
presence of multiple uncertainties [6]. Furthermore, the two-
port uncertainties in this study are nonlinear, which brings
in an additional obstacle. To overcome these difficulties, we
take advantage of the special two-port structures and make
use of geometric insights on system stability via an input-
output approach. By generalizing the “arcsin” theorem in
[7] for a standard closed-loop system, we are able to give
a concise necessary and sufficient robust stability condition
for the two-port NCS. Moreover, the stability condition
is scalable and computationally friendly, in the sense that
when the topology of the two-port NCS is changed, the
stability condition can be efficiently updated based only on
the modified components. In terms of designing an optimal
controller, it suffices to solve an H∞ optimization problem,
which is mathematically tractable.

It is worth noting that there exist previous works on
robust stabilization of NCSs with special architectures and
various uncertainty descriptions. For example, [?] consider-
s teleoperation of robots through two-port communication
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Fig. 1: A Standard Closed-Loop System

...

Fig. 2: Communication Channels Modeled by Cascaded
Two-port Networks

networks with time-delay, [?] considers a plant with para-
metric uncertainties over networks subject to packet loss,
[?] considers a plant with polytopic uncertainties in its
coefficients over a communication channel subject to fadings
and so on. The differences of our work from the previous
ones are that our channel model characterizes bi-directional
communication involving both distortions and interferences
and these uncertainties may be nonlinear.

The rest of the paper is organized as follows. First in
Section II, we define open-loop stability, closed-loop well-
posedness, and closed-loop stability. Thereafter in Section
III, we present the results on the robust stability of cascaded
two-port networks. In Section IV, we conclude this study
and summarize our contributions.

II. PRELIMINARIES

A. Open-loop Stability

Let Hn2 := {f : [0,∞) → Rn | ‖f‖22 :=
∫∞
0
|f(t)|2 dt <

∞}, where |·| denotes the Euclidean norm. LetRH∞ consist
of all the real rational members of H∞, the Hardy ∞-space
of functions that are holomorphic on the right-half complex
plane.

Denote the time truncation operator at time τ ∈ [0,∞) as
Tτ , such that for u(t) ∈ H2,

(Tτu)(t) =

{
u(t), 0 ≤ t < τ ;
0, Otherwise.

A nonlinear system is represented by an operator P :
dom(P ) ⊂ H2 7→ H2 with domain dom(P ) = {u ∈
H2 | Pu ∈ H2}. We denote its image as img(P ). A physical
system should additionally be causal, which is defined as
follows [?].

Definition 1. A nonlinear system P : dom(P ) ⊂ H2 7→ H2

is said to be causal if for every τ ∈ [0,∞) and u1, u2 ∈
dom(P ),

Tτu1 = Tτu2 ⇒ TτPu1 = TτPu2

We assume P 0 = 0 throughout this study, which means
every nonlinear system we consider has zero output when-
ever the input is zero. The finite-gain stability of a system is
defined as follows [?].

Definition 2. A causal nonlinear operator (system) P is said
to be (finite-gain) stable if dom(P ) = H2 and its operator
norm is bounded, that is

‖P ‖ := sup
06=x∈H2

‖Px‖2
‖x‖2

<∞.

B. Closed-loop Stability

We consider a standard closed-loop system in Fig. 1
with plant P : dom(P ) ⊂ Hp2 7→ Hm2 and controller
C : dom(C) ⊂ Hm2 7→ H

p
2. In the following, the superscripts

of Hm2 and Hp2 will be omitted for notational simplicity.
The graph of P is defined as

GP =

[
I
P

]
dom(P )

and similarly the inverse graph of C is defined as

G′C =

[
C
I

]
dom(C),

both of which are assumed to be closed in this study.
It can be seen in [?], [?], [8] that various versions of

feedback well-posedness may be assumed based on different
signal spaces and causality requirements. In this study, we
adopt the well-posedness definition from [8] without appeal-
ing to extended spaces, by contrast to, for example, [?], [?].

Definition 3. The closed-loop system [P ,C] is said to be
well-posed if

FP ,C : dom(P )× dom(C) 7→ H2

:=

[
u1
y2

]
7→
[
d1
d2

]
=

[
I C
P I

] [
u1
y2

]
is causally invertible on img(FP ,C).

Correspondingly, the stability of the closed-loop system is
defined as follows:

Definition 4. A well-posed closed-loop system [P ,C] is
(finite-gain) stable if FP ,C is surjective and F−1P ,C is finite-
gain stable.

When FP ,C is surjective, the parallel projection operators
[?] along GP and G′C , ΠGP �G′

C
and ΠG′

C�GP , can be defined
respectively as

ΠGP �G′
C

:

[
d1
d2

]
∈ H2 7→

[
u1
y1

]
∈ GP

=

[
I 0
0 −I

]
F−1P ,C +

[
0 0
0 I

]
,

(1)

ΠG′
C�GP :

[
d1
d2

]
∈ H2 7→

[
u2
y2

]
∈ G′C

=

[
−I 0
0 I

]
F−1P ,C +

[
I 0
0 0

]
.

(2)



(a) A Single Two-Port Network

(b) One-Stage Two-Port Connection

Fig. 3: Two-Port Networks: an Illustration

It follows that every w ∈ H2 has a unique decomposition
as w = m + n with m = ΠGP �G′

C
w ∈ GP and n =

ΠG′
C�GPw ∈ G′C .
The next proposition bridges the finite-gain stability and

the boundedness of parallel projections [?].

Proposition 1. A well-posed closed-loop system [P ,C] is
stable if and only if FP ,C is surjective and ΠGP �G′

C
or

ΠG′
C�GP is finite-gain stable.

For a finite-gain stable closed-loop system [P ,C], its
stability margin is defined as bP ,C := ‖ΠGP �G′

C
‖−1. It is

shown in [?] that if either P or C is linear, then bP ,C =
bC,P .

III. NETWORKED ROBUST STABILIZATION WITH
CASCADED NONLINEAR UNCERTAINTIES

A. Two-Port Networks as Communication Channels

The use of two-port networks as a model of communica-
tion channels is adopted from [?], [5]. Two-port networks
were first introduced and investigated in electrical circuits
theory [3]. The network N in Fig. 3a has two external ports,
with one port composed of v, w and the other of u, y, and
is called a two-port network. A two-port network N may
have various representations, out of which we choose the
transmission type to model a communication channel. Define
the transmission matrix T as

T =

[
T 11 T 12

T 21 T 22

]
and

[
v
w

]
= T

[
u
y

]
. (3)

When the communication channel is perfect, i.e., commu-
nication takes place without distortion or interference, the
transmission matrix is simply

T =

[
Im 0
0 Ip

]
.

If the bidirectional channel admits both distortions and
interferences, we can let the transmission matrix take the
form

T = I + ∆ =

[
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
,

...

...

+

+

Fig. 4: Equivalent Plant and Controller

where I : H2 7→ H2 is the identity operator and

∆ =

[
∆÷ ∆−
∆+ ∆×

]
: H2 7→ H2

satisfies ‖∆‖ ≤ r < 1, which ensures that T is stably
invertible. The four-block matrix ∆ is called the uncertainty
quartet.

B. Graph Analysis on Cascaded Two-Port NCS

Consider the transmission type representation of the two-
port networks {Nk}lk=1. If the k-th stage of the network
admits a stable nonlinear uncertainty ∆k, then the transmis-
sion matrix is given as T k = I +∆k. Signals in Fig. 4 have
the following relations:[
uk
yk

]
=

 k∏
j=1

T k+1−j

[u
y

]
=

 k∏
j=1

(I + ∆k+1−j)

[u
y

]
,

[
vk
wk

]
=

 l∏
j=k+1

T−1j

[v
w

]
=

 l∏
j=k+1

(I + ∆j)
−1

[v
w

]
.

If we view P together with {N j}kj=1 as an equivalent
plant P e

k with uncertainties {∆j}kj=1, then the graph of P e
k

is given by

GP e
k

=

 k∏
j=1

(I + ∆k+1−j)

GP . (4)

Similarly, if we view C together with {N j}lj=k+1 as an
equivalent controller Ce

k with uncertainties {∆j}lj=k+1, then
the graph of Ce

k is

G′Ce
k

=

 l∏
j=k+1

(I + ∆j)
−1

G′C . (5)

For convenience, we regard k = 0 as the situation when
P is isolated from the two-port networks and k = l when C
is isolated.



C. Robust Stability Condition

With the equivalent plant and controller representations
derived aforehand, next we extend the definition on the
stability of the two-port NCS in [?] to the nonlinear case.

As shown in Fig. 4, we denote the k-th input pair as Ik :=
[pk, qk]T , the k-th output pair as Ok := [uk, wk]T and the
set of all outputs as O := [u1, w1, u2, w2, . . . , ul, wl]

T . By
the feedback well-posedness assumption, the map from input
Ik to output O exists and we denote it as Ak : Ik ∈ H2 7→
O ∈ H2.

Definition 5. The two-port NCS in Fig. 4 is said to be
stable if the operator Ak is finite-gain stable for every
k = 0, 1, . . . , l.

Given the stability definition, we present next the main
robust stability theorem involving nonlinear perturbations in
a two-port NCS.

In the following we assume that every closed-loop system
[P ,C] is well-posed and FP ,C is surjective. Hence from
Proposition 1, the stability of [P ,C] is equivalent to the
finite-gain stability of ΠGP �G′

C
. Let nominal LTI closed-loop

system [P,C] be stable.

Theorem 1. The two-port NCS is finite-gain stable for all
{∆k}lk=1 subject to ‖∆k‖ ≤ rk if and only if

l∑
k=1

arcsin rk < arcsin bP,C . (6)

The development of the full proof of the above theorem
can be referred to [?]. We omit it here due to space limitation.
From the above theorem, we know the stability margin bP,C
is the same as that in a standard closed-loop system with
“gap” uncertainties [6], [7], [9], hence the synthesis problem
of a two-port NCS can be solved by an H∞ optimization. In

addition, the synthesis is irrelevant to detailed requirements
of communication channels between the plant and controller,
such as the number of two-port connections and how the
uncertainty bounds are distributed among all the channels,
which provide more flexibility on the selection of the com-
munication channels.

IV. CONCLUSION

We investigate networked robust stabilization problem
concerning LTI systems perturbed by nonlinear uncertainties.
A necessary and sufficient stability condition is given in the
form of an “arcsin” inequality. As far as controller synthesis
is concerned, the problem can be solved through an H∞
optimization regarding the closed-loop stability margin.
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