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Abstract

We investigate the robust stability of a networked control system (NCS) subject to simultaneous nonlinear uncertainties. An
NCS is described as a feedback interconnection of a plant and a controller communicating through a bidirectional channel
modelled by cascaded nonlinear two-port networks. This model is sufficiently rich to capture various properties of a real-world
communication channel, such as distortion, interference, and nonlinearity. We provide a necessary and sufficient condition for
the robust finite-gain stability of such an NCS when the model uncertainties in the plant and controller are measured by the
gap metric and those in the nonlinear channels are measured by operator norms of the uncertain elements. This condition is
given by an inequality involving “arcsine” of the uncertainty bounds and is derived from novel geometric insights underlying
the robustness of a standard closed-loop system in the presence of conelike nonlinear perturbations on the system graphs.
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1 Introduction

Feedback is widely used for handling uncertainties in
the area of systems and control. Within a feedback
loop, communication between the plant and controller
plays an important role in that the achieved control
performance and robustness heavily rely on the quality
of communication. Most control systems can be regarded
as structured networks with signals transmitted through
channels powered by various devices, such as sensors
or satellites. This gives rise to networked control
systems (NCSs), which differ from standard closed-loop
systems in that the information is exchanged through
communication networks (Zhang, Branicky, & Phillips,
2001). The presence of non-ideal communication may
introduce disturbances to a control system and hence
significantly compromise its performance.
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In this study, we introduce a two-port NCS model,
generalizing a standard finite dimensional linear time-
invariant (FDLTI) closed-loop system (Fig. 1) to a
feedback system with cascaded two-port connections
(Fig. 2). Therein, the plant P and controller C are
uncertain FDLTI systems that may be open-loop
unstable while the perturbations on the transmission
matrices T k of the two-port communication networks
are nonlinear. It is known that model uncertainties
are well characterized through the gap metric and its
variants, among which the gap (Zames & El-sakkary,
1980; Georgiou, 1988; Georgiou & Smith, 1990; Qiu &
Davison, 1992a), the pointwise gap (Schumacher, 1992;
Qiu & Davison, 1992b) and the ν-gap (Vinnicombe,
1993, 2000) have been studied intensively. In this paper,
we adopt the gap metric as our main analysis tool.
Since the gap metric and its variants are topologically
equivalent on the class of FDLTI systems, most of the
results in this paper hold true for the ν-gap and the
pointwise gap with similar arguments. As for the non-
ideal two-port communication channels, we model their
transmission matrices as T = I + ∆, where ∆ is
a bounded nonlinear operator. It is noteworthy that
the NCS framework introduced in this paper can also
accommodate certain nonlinear plants and controllers.
In particular, a nonlinear plant or controller may be
modelled as the interconnection of an FDLTI system
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Fig. 1. A standard closed-loop system.

...
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Fig. 2. Two-port NCS with uncertainties.

and a nonlinear communication channel. For the ease
of subsequent presentation, however, we adopt the
convention of calling the two FDLTI components in a
two-port NCS the plant and controller. While it is well
known that an uncertain system is usually represented
by a fixed linear fractional transformation (LFT) of its
uncertain component (Kimura, 1996; Zhou & Doyle,
1998), our two-port uncertainty model can be described
by an uncertain LFT of a fixed component.

The main contribution of this study is a clean result
for concluding the finite-gain stability of an NCS
with different types and multiple sources of nonlinear
uncertainties. A necessary and sufficient robust stability
condition for such an NCS is then obtained. Based on the
condition, a special robust stability margin of the NCS is
introduced in terms of the Gang of Four transfer matrix
(Åström & Murray, 2008). As for the synthesis of an
optimally robust controller in the sense that the stability
margin is maximized, it suffices to solve a one-blockH∞
optimization problem (Georgiou & Smith, 1990).

It is worth noting that similar geometric approaches to
analyzing robust stability of nonlinear feedback systems
have been developed from different perspectives; e.g.,
see (Teel, 1996) for uncertainty with conic interpretation
and (Megretski & Rantzer, 1997; Cantoni, Jönsson, &
Kao, 2012) for uncertainty subject to integral quadratic
constraints. On the other hand, there have been relevant
works on robust stabilization of NCSs with special
architectures and various uncertainty; see (Zhao, Qiu,
& Gu, 2020) for a detailed introduction of literature. A
previous study by the authors in (Zhao, Khong, & Qiu,
2017) considers a two-port NCS involving only nonlinear
channel uncertainties under a rather strong assumption.
This study differs from or generalizes the previous
results in that it handles the model uncertainty and the
nonlinear perturbations within two-port communication
channels simultaneously.

The rest of the paper is organized as follows. First in
Section 2, we introduce open-loop & closed-loop systems,
gap-type model uncertainties, and a preliminary robust
stability result. Then in Section 3, we present our main
result of the robust stability condition for two-port
NCSs. The proof of the main theorem is provided in
Section 4. In Section 5, we conclude this study and point
out possible directions for future research.

2 Preliminaries

2.1 Open-Loop Stability

Let F = R or C be the real or complex field, and Fn
be the linear space of n-tuples of F over the field F. For
x ∈ Fn, its Euclidean norm is denoted by |x|. For a
complex number s ∈ C, its real and imaginary parts are
denoted by Re s and Im s, respectively. Denote byHp×m∞
the Hardy ∞-space of functions that are holomorphic
and uniformly bounded on the right-half complex plane.
This space is equipped with the H∞ norm ‖G‖∞ :=
supRe s>0 σ̄(G(s)) forG ∈ Hp×m∞ , where σ̄(·) denotes the
largest singular value of a complex matrix. An FDLTI
system with transfer matrix G is said to be stable if
G ∈ Hp×m∞ . Denote by Pp×m the set of all real rational
proper transfer matrices, and by RHp×m∞ the set of all
real rational members in Hp×m∞ .

Denote the set of all causal energy-bounded signals by

Ln2 =

{
u : [0,∞)→ Rn : ‖u‖22 :=

∫ ∞
0

|u(t)|2 dt <∞
}
.

For T ≥ 0, define the truncation operator ΓT on all
signals u : [0,∞)→ Rn by (ΓTu)(t) = u(t) for 0 ≤ t ≤ T
and (ΓTu)(t) = 0, otherwise.

Denote the extended L2 space (Willems, 1971, Chap-
ter 2), (Feintuch & Saeks, 1982, Chapter 8) by

Ln2e := {u : [0,∞)→ Rn : ΓTu ∈ Ln2 , ∀ T > 0} .

A nonlinear system is represented by an operator

P : Lm2e → L
p
2e.

We define the L2 domain of P as the set of all its input
signals in Lm2 such that the output signals are in Lp2, i.e.,

D(P ) := {u ∈ Lm2 : Pu ∈ Lp2},

and correspondingly its L2 range asR(P ) := PD(P ). A
physical system should additionally be causal (Willems,
1971, Chapters 2 and 4), (Vidyasagar, 1993, Chapter 6),
which is defined as follows.

Definition 1 A system P is said to be causal if for all
T > 0 and u1, u2 ∈ Lm2e,

ΓTu1 = ΓTu2 ⇒ ΓTPu1 = ΓTPu2.
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It is said to be strongly causal if it is causal and if for all
T > 0, ε > 0, and T ′ ∈ (0, T ], there exists a real number
∆T > 0 such that for any u1, u2 ∈ Lm2e,

ΓT ′u1 = ΓT ′u2 ⇒
‖ΓT ′+∆T

(Pu1 − Pu2)‖ ≤ ε‖ΓT+∆T
(u1 − u2)‖.

Throughout this study, we assume every system P
is causal and that it has zero output whenever the
input is zero, i.e., P 0 = 0. When P : Lm2e → Lp2e
is an FDLTI system, its restriction P |D(P ) : D(P ) ⊂
Lm2 → L

p
2 is equivalent, via the Fourier transform, to

multiplication by a real rational proper transfer matrix
in the frequency domain. On the other hand, an FDLTI
system represented by a (possibly unbounded) linear
operator P : D(P )→ Lp2 can be uniquely and causally
extended to an operator mapping from Lm2e to Lp2e
(Georgiou & Smith, 1993, Proposition 11). Henceforth,
we use P ∈ Pp×m to denote the transfer matrix
corresponding to such a P , and we do not distinguish
between an FDLTI system and its transfer matrix when
the context is clear.

The finite-gain stability of such a system is defined as
follows (Vidyasagar, 1993, Chapter 6).

Definition 2 A system P is said to be (finite-gain)
stable if there exists α > 0 such that

‖ΓTPu‖2 ≤ α‖ΓTu‖2, ∀ T ≥ 0, u ∈ Lm2e. (1)

The following lemma is a direct consequence of (van der
Schaft, 2017, Proposition 1.2.3).

Lemma 1 A system P is finite-gain stable if and only
if D(P ) = Lm2 and

‖P ‖ := sup
0 6=x∈Lm2

‖Px‖2
‖x‖2

<∞.

The incremental stability (or Lipschitz continuity) of a
system is defined as follows (Willems, 1971, Chapter 2).

Definition 3 A system P is said to be incrementally
stable if there exists a Lipschitz constant L > 0 such that

‖ΓT (Px−P y)‖2 ≤ L‖ΓT (x−y)‖2, ∀ T ≥ 0, x, y ∈ Lm2e.

Clearly, the incremental stability of a system P implies
its finite-gain stability since P 0 = 0.

2.2 Closed-Loop Stability

Consider a standard closed-loop system P #C as
illustrated in Fig. 1 with plant P : Lm2e → Lp2e
and controller C : Lp2e → Lm2e. In the following, the
superscripts may be omitted when the dimensions are
clear from the context. The graph of P and the inverse
graph of C are defined, respectively, as

GP =

[
I

P

]
L2e and G′C =

[
C

I

]
L2e.

The corresponding L2 graphs of P and C are defined as

G2
P := GP ∩ L2 and G′2C := G′C ∩ L2,

respectively, both of which are assumed to be closed
throughout this paper. When P and C are FDLTI, G2

P
and G′2C are closed subspaces in L2.

It can be seen in (Willems, 1971; Vidyasagar, 1993;
Khong, Cantoni, & Manton, 2013) that various versions
of feedback well-posedness may be stipulated based on
different signal spaces and causality requirements. In
this study, we adopt the well-posedness definition from
(Willems, 1971; Vidyasagar, 1993).

Definition 4 The closed-loop system P #C in Fig. 1
is said to be well-posed if

FP ,C =

[
u1

y2

]
7→

[
d1

d2

]
=

[
I −C
−P I

]

is causally invertible on Lm+p
2e .

Throughout the paper, well-posedness will always
be assumed for the nominal as well as for all
perturbed closed-loop systems. Correspondingly, closed-
loop stability is defined as follows.

Definition 5 A well-posed closed-loop system P #C is
(finite-gain) stable if F−1

P ,C is finite-gain stable.

When P #C is well-posed, a pair of parallel projection
operators (Doyle, Georgiou, & Smith, 1993; Georgiou &
Smith, 1997), ΠGP �G′

C
along G′C onto GP and ΠG′

C
�GP

along GP onto G′C , can be defined respectively as

ΠGP �G′
C

=

[
d1

d2

]
7→

[
u1

y1

]
= F−1

P ,C +

[
0 0

0 −I

]
,

ΠG′
C

�GP =

[
d1

d2

]
7→

[
u2

y2

]
= F−1

P ,C +

[
−I 0

0 0

]
.

It follows that every w ∈ Lm+p
2e has a unique

decomposition w = u+ v with u = ΠGP �G′
C
w ∈ GP and

v = ΠG′
C

�GPw ∈ G′C . It is shown in (Doyle et al., 1993)
that a well-posed closed-loop system P #C is finite-
gain stable if and only if ΠGP �G′

C
or ΠG′

C
�GP is finite-

gain stable. Consequently, for a finite-gain stable closed-
loop system P #C, we can define its stability margin as
‖ΠGP �G′

C
‖−1. It is shown in (Doyle et al., 1993) that if

either P or C is linear, then ‖ΠGP �G′
C
‖ = ‖ΠG′

C
�GP ‖. In

particular, when P #C is FDLTI, the parallel projection
operators reduce to the Gang of Four transfer matrix
(Åström & Murray, 2008), i.e.,

ΠGP�G′
C

=

[
I

P

]
(I − CP )−1

[
I −C

]
= P #C.

Henceforth, for an FDLTI closed-loop system, P #C
denotes both the closed-loop system itself and its Gang
of Four transfer matrix.
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2.3 Gap Metric and Robust Stability

A well-known tool for characterizing the model
uncertainty in a system is the “gap” (or “aperture”)
and its variants (Zames & El-sakkary, 1980; Georgiou,
1988; Georgiou & Smith, 1990; Qiu & Davison, 1992a;
Schumacher, 1992; Qiu & Davison, 1992b; Vinnicombe,
1993). In what follows, we review some concepts related
to the gap metric.

Let X and Y be two closed subspaces of a Hilbert space
L, and let ΠX and ΠY be the orthogonal projections
onto X and Y, respectively. The gap metric between the
two subspaces is defined as (Kato, 1966, Chapter 2)

γ(X ,Y) := ‖ΠX −ΠY‖. (2)

The gap between FDLTI systems P1 and P2 is defined
as the gap between their respective L2 graphs, i.e.,

δ(P1, P2) := γ(G2
P1
,G2
P2

).

Given an FDLTI system P ∈ P, denote the gap ball with
center P and radius r ∈ [0, 1) by

B(P, r) :=
{
P̃ ∈ P : δ(P, P̃ ) ≤ r

}
. (3)

The following robust stability result, with the stability
condition given in terms of an “arcsine” inequality, was
obtained in (Qiu & Davison, 1992a). We state it in the
following lemma.

Lemma 2 Let P #C ∈ RH∞ and rp, rc ∈ [0, 1). The

feedback system P̃ # C̃ is stable for all P̃ ∈ B(P, rp) and

C̃ ∈ B(C, rc) if and only if

arcsin rp + arcsin rc < arcsin ‖P #C‖−1
∞ .

3 Main Results: Networked Robust Stability

In this section, we present our main result of the study,
which is a necessary and sufficient robust stability
condition for a two-port NCS subject to simultaneous
uncertainties. We start with some concepts related to
two-port networks, and then investigate the stability of
such an NCS.

3.1 Uncertain Two-Port Networks

The use of two-port networks as a model of communica-
tion channels is adopted from (Gu & Qiu, 2011; Zhao,
Qiu, & Gu, 2020). The network T in Fig. 3 has two ex-
ternal ports, with one port composed of v, w and the
other of u, y, and is hence called a two-port network.
Define its transmission matrix T as

T =

[
T11 T12

T21 T22

]
=

[
u

y

]
7→

[
v

w

]
. (4)

Fig. 3. Single two-port network.

Fig. 4. One-stage two-port connection.

++

++

++

++

-

Fig. 5. Plant with the uncertainty quartet.

Henceforth, T stands for both the two-port network it-
self and its transmission representation for notational
simplicity. We model a bidirectional communication
channel subject to nonlinear distortions and interfer-
ences by a two-port network with its transmission matrix

T = I + ∆, where ∆ =

[
∆÷ ∆−

∆+ ∆×

]
is finite-gain stable

with ‖∆‖ < 1. We also assume that ∆ is strongly causal
as introduced in Definition 1. In this case, I # (−∆) is
well-posed, and it follows from the nonlinear small-gain
theorem (Desoer & Vidyasagar, 1975, Chapter 3) that
T−1 is causal and stable. The four-block operator matrix
∆ is called the (nonlinear) uncertainty quartet (Zhao,
Chen, Khong, & Qiu, 2018).

Fig. 4 describes a two-port networkT = I+∆ connected
to an FDLTI system P . One way to analyze how the
uncertainties influence the nominal system is via the
transformation of the diagram into Fig. 5. It follows from
the strong causality of ∆− and ∆÷ that the feedback
loop in Fig. 5 is well-posed. As a result, the perturbed
system v 7→ w is well defined and causal.

3.2 Graph Analysis on Cascaded Two-Port NCSs

In order to acquire a better understanding of a two-
port NCS, we establish in the following the connection
between a two-port NCS and its equivalent closed-loop
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Fig. 6. Perturbed plant and controller representations.

systems by investigating the graphs of systems. As in
Fig. 6, the k-th stage two-port network, which admits
a strongly causal and incrementally stable nonlinear
uncertainty ∆k, is represented by the transmission
matrix Tk = I + ∆k, k = 1, 2, . . . , l. We can associate
the first k stages of the cascaded two-port networks with
plant P ∈ Pp×m, and the remaining l − k stages with
the controller C ∈ Pm×p. Then the diagram in Fig. 2
is equivalently transformed into that in Fig. 6 to form a
standard closed-loop system P̃ k # C̃k.

With similar analysis in (Zhao, Qiu, & Gu, 2020, Section
III.B), we view P together with {T j}kj=1 as a perturbed

plant P̃k = uk 7→ yk with uncertainties {∆j}kj=1, and

thereby obtain the graph of P̃k as

GP̃k = (I + ∆k) · · · (I + ∆1)GP . (5)

Similarly, we view C together with {T j}lj=k+1 as a

perturbed controller C̃k = wk 7→ vk with uncertainties
{∆j}lj=k+1, and obtain the inverse graph of C̃k as

G′
C̃k

= (I + ∆k+1)−1 · · · (I + ∆l)
−1G′C . (6)

Similarly to the analysis for Fig. 5 in Section 3.1, we
obtain from the strong causality of ∆k, k = 1, 2, . . . , l,
that P̃k and C̃k are well defined and causal.

3.3 Main Theorem: Robust Stability Condition

As shown in Fig. 6, we denote the k-th input pair
of the NCS as Ik := [pTk qTk ]T , the k-th output pair
as Ok := [uTk wTk ]T , k = 1, 2, . . . , l, and the vector
collecting all outputs as O := [OT1 OT2 · · · OTl ]T . By the
well-posedness assumption, the map from Ik ∈ L2e to
O ∈ L2e is well defined.

Definition 6 The two-port NCS in Fig. 6 is said to
be stable if Ik 7→ O is finite-gain stable for every k =
1, 2, . . . , l.

The following proposition further simplifies the stability
condition of an NCS.

Proposition 1 The two-port NCS is finite-gain stable if
and only if the closed-loop system P̃k # C̃k is finite-gain
stable for every k = 1, 2, ..., l.

Given the definition of stability of NCSs, we are
ready to present the main robust stability theorem
involving simultaneous uncertainties in the two-port
NCS. Specifically, the communication channels are
subject to nonlinear perturbations, and the plant
and controller are subject to model uncertainties
characterized by the gap metric. The proof of the
theorem is provided in Section 4.

Theorem 1 Let P #C ∈ RH∞, P or C be strongly
causal, and rp, rc, rk ∈ [0, 1). The NCS in Fig. 2 is

finite-gain stable for all P̃ ∈ B(P, rp), C̃ ∈ B(C, rc),
and strongly causal and incrementally stable ∆k with
‖∆k‖ ≤ rk, k = 1, 2, . . . , l, if and only if

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk

< arcsin ‖P #C‖−1
∞ . (7)

From the above theorem, it is clear that ‖P #C‖−1
∞

can be viewed as the robust stability margin of the
two-port NCS. The larger the margin, the more robust
the two-port NCS. In addition, we observe that the
robust stability margin ‖P #C‖−1

∞ is the same as that
in a standard closed-loop system in the presence of
gap-type uncertainties as in Lemma 2, whereby the
optimally robust controller can be derived by the same
approach (Georgiou & Smith, 1990). In addition, the
controller synthesis is independent of the structure
of the communication channel between the plant and
controller, such as the number of two-port connections
and how the uncertainty bounds are distributed among
all the channels.

4 Derivation of the Main Result

This section is dedicated to the derivation of the main
result — Theorem 1. Interested readers are referred to
(Zhao, Khong, & Qiu, 2020) for the detailed proofs to
the lemmas and propositions in what follows.

4.1 Conelike Uncertainty Sets

In order to characterize nonlinear uncertainties in the
spirit of the gap metric, we introduce the notion of
conelike uncertainty sets as follows. Let M be a closed
set in L2. Define the conelike neighborhood centered at
M with radius r as

S(M, r):=

{
v ∈ L2 : inf

0 6=u∈M

‖v − u‖2
‖u‖2

≤ r
}
∪ {0}. (8)
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IfM is the L2 graph of a certain FDLTI system, the set
S(M, r) can be viewed as a closed double cone in L2,
which provides some geometric intuition on modelling
system uncertainties with such a neighborhood.

Inspired by the standard gap metric result on FDLTI
systems in Lemma 2, we have the following result
concerning closed-loop systems subject to nonlinear
perturbations.

Proposition 2 Let P #C ∈ RH∞ and rp, rc ∈ [0, 1).
Then the following statements are equivalent.

(a) F P̃ ,C̃ has a bounded inverse on R(F P̃ ,C̃) for all P̃

with G2
P̃
⊂ S(G2

P , rp) and C̃ with G′2
C̃
⊂ S(G′2C , rc);

(b) S(G2
P , rp) ∩ S(G′2C , rc) = {0};

(c) arcsin rp + arcsin rc < arcsin ‖P #C‖−1
∞ .

In the above proposition, we present a necessary
and sufficient “pre-stability” condition in terms of an
“arcsine” inequality, allowing simultaneous nonlinear
perturbations on the plant and controller. Under the
condition of statement (a), as long as we can further
show thatR(F P̃ ,C̃) = L2, then the closed-loop stability

of P̃ # C̃ follows from Lemma 1. It is worth noting
that for nonlinear systems, δ-type gaps and γ-type gaps
can be used to characterize uncertain systems through
their graphs (Georgiou & Smith, 1997; James, Smith, &
Vinnicombe, 2005). In contrast, a conelike neighborhood
simply gathers all input-output pairs lying within a
prespecified angular distance from its center — the L2

graph of the nominal system.

4.2 Proof of the Main Theorem

We first introduce in the following several useful lemmas.

Lemma 3 LetM0 ⊂ L2 be a closed subspace andMj =
S(Mj−1, rj) for rj ∈ [0, 1), j = 1, 2, . . . , k, satisfying∑k
j=1 arcsin rj ≤ π/2. Then it holds that

Mk ⊂ S

M0, sin

 k∑
j=1

arcsin rj

 .

In what follows, we introduce an important robust
stability result related to the directed nonlinear gap
(Georgiou & Smith, 1997). For systems P 1 and P 2,
define the directed nonlinear gap from P 1 to P 2 as

~δ(P 1,P 2) := limsup
T>0

sup
v∈GP2

inf
u∈GP1

,

‖ΓTu‖2 6=0

‖ΓT (u−v)‖2
‖ΓTu‖2

. (9)

The following lemma is adapted from (Georgiou &
Smith, 1997, Theorem 3).

Lemma 4 Let nonlinear system P #C be finite-gain
stable. Then P̃ #C is finite-gain stable for all P̃ with

~δ(P , P̃ ) < ‖ΠGP �G′
C
‖−1.

Furthermore, we have the following important lemma
relating cascaded two-port uncertainty neighborhoods
to the directed nonlinear gap. Given an FDLTI closed-
loop system P #C and incrementally stable uncertainty
quartets ∆j , j = 1, 2, . . . , l, we define a family of

perturbed plants and controllers P̃k(τ) and C̃k(ν)
parameterized by τ and ν ∈ [0, 1], respectively, via

GP̃k(τ) = (I + τ∆k) · · · (I + τ∆1)GP ,
G′
C̃k(ν)

= (I + ν∆k+1)−1 · · · (I + ν∆l)
−1G′C .

Lemma 5 For all ε > 0, there exists δ > 0 such that for
all τ, ν ∈ [0, 1), it holds that

~δ(P̃k(τ), P̃k(τ + δ)) < ε and ~δ(C̃k(ν), C̃k(ν + δ)) < ε.

In other words, P̃k(τ) and C̃k(ν), as functions of τ and
ν, respectively, are uniformly continuous with respect to
the directed gap.

We are ready to develop the proof to Theorem 1,
which borrows the idea of using gap-metric homotopy to
establish feedback stability from (Rantzer & Megretski,
1997; Cantoni et al., 2012).

PROOF. First we show the necessity using contrapos-
itive arguments. Assume that inequality (7) does not
hold. Then it follows from (Zhao, Qiu, & Gu, 2020, The-

orem 1) that there exist systems P̃ , C̃ ∈ P and stable
uncertainties ∆k ∈ RH∞, k = 1, 2, . . . , l satisfying that
P̃ ∈ B(P, rp), C̃ ∈ B(C, rc), and ‖∆k‖∞ ≤ rk, so that
Pq #Cq /∈ H∞ for an integer q ∈ [0, l]. Here, Pq, Cq
are determined, respectively, by GPq = (I + ∆q) · · · (I +

∆1)GP̃ and G′Cq = (I + ∆q+1)−1 · · · (I + ∆l)
−1G′

C̃
. Since

every strongly causal FDLTI system admits a strictly
proper transfer function representation, it follows from
the hypothesis that either P or C is strictly proper.
Therefore, one can verify that there exists an ω̂ 6= ∞
such that ω̂ ∈ arg maxω∈R∪∞ σ̄(P (jω) #C(jω)). By the
proof of necessity of (Zhao, Qiu, & Gu, 2020, Theorem 1)
and using the interpolation method in (Vinnicombe,
2000, Lemma 1.14) for ω̂, we can further require that
∆k ∈ RH∞, k = 1, 2, . . . , l, are strictly proper trans-
fer matrices, i.e., they are strongly causal. Therefore, by
contraposition and Proposition 1, we prove the necessity
of the robust stability condition in Theorem 1.

In the rest of this proof, we show the sufficiency of the
robust stability condition in three steps.
Step 1 : Suppose that we are at the k-th stage of
equivalent closed-loop systems as shown in Fig. 6. Let
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M = G2
P , M̃0 = G2

P̃
, M̃j(τ) = G2

P̃j(τ)
, j = 1, 2, . . . , k,

where GP̃j(τ) = (I + τ∆j) · · · (I + τ∆1)GP̃ . Then it

follows that

M̃0 ⊂ S(M, rp) and M̃j(τ) = (I + τ∆j)M̃j−1(τ),

with ‖τ∆j‖ ≤ τrj . Let v ∈ M̃j(τ) \ {0}, then there

exists u1 ∈ M̃j−1(τ) such that v = (I + τ∆j)u1. Hence
we have

inf
06=u∈M̃j−1(τ)

‖v − u‖2
‖u‖2

≤ ‖τ∆ju1‖2
‖u1‖2

≤ ‖τ∆j‖ ≤ τrj .

As a result, M̃j(τ) ⊂ S(M̃j−1(τ), τrj), j = 1, 2, . . . , k.

Since M̃0 is a closed subspace in L2, it follows from
Lemma 3 and (8) that

M̃k(τ) ⊂ S

M̃0, sin

 k∑
j=1

arcsin τrj


⊂ S

M, sin

arcsin rp +

k∑
j=1

arcsin τrj

 .

Likewise, for the controller part, let

N = G′2C , Ñl = G′2
C̃
, Ñj(ν) = G′2

C̃j(ν)
, j = k + 1, . . . , l,

where G′
C̃j(ν)

= (I+ν∆j+1)−1 · · · (I+ν∆l)
−1G′

C̃
. Then

it follows that

Ñk(ν) ⊂ S

N , sin
arcsin rc +

l∑
j=k+1

arcsin νrj

 .

Therefore, from the stability condition (7) and Proposi-
tion 2, we know F P̃k(τ),C̃k(ν) has a uniformly bounded

inverse on R(FP̃k(τ),C̃k(ν)) over all τ, ν ∈ [0, 1], which

ensures the existence of a constant α > 0 such that∥∥∥∥ΠGP̃j(τ)�G′C̃j(ν)x
∥∥∥∥

2

≤ α ‖x‖2 , (10)

for all x ∈ R(FP̃k(τ),C̃k(ν)) and τ, ν ∈ [0, 1].

Step 2: Note that P̃k(τ) and C̃k(ν) are uniformly
continuous with respect to the directed nonlinear gap. In
particular, it follows from Lemma 5 that for α > 0 given
in (10), there exists δ > 0 such that for all τ, ν ∈ [0, 1),

~δ(P̃k(τ), P̃k(τ + δ)) <
1

α
,

and ~δ(C̃k(ν), C̃k(ν + δ)) <
1

α
. (11)

Step 3: When τ = ν = 0, it follows from Lemma 2
that P̃k(0) # C̃k(0) = P̃ # C̃ is stable. Hence (10)

implies that

∥∥∥∥ΠGP̃j(0)�G′C̃j(0)
∥∥∥∥ ≤ α. Then combining

(11) with Lemma 4, we obtain the finite-gain stability

of P̃k(δ) # C̃k(0). By iteratively using (10), (11) and
Lemma 4, we obtain that all the closed-loop systems in
the following sequence are finite-gain stable:

P̃k(δ) # C̃k(δ), P̃k(2δ) # C̃k(δ), P̃k(2δ) # C̃k(2δ),

. . . , P̃k(1) # C̃k(1− δ), P̃k(1) # C̃k(1).

The finite-gain stability of the two-port NCS then follows
by Proposition 1. 2

5 Conclusions and Future Work

We investigate the robust stabilization problem of
a two-port NCS where the plant and controller are
subject to gap-type uncertainties and the cascaded
two-port communication channels are subject to
nonlinear perturbations. In order to characterize such
nonlinear uncertainty, a special conelike neighborhood,
which is inspired and motivated by the elegant
geometric properties of the gap metric, is proposed and
investigated. A necessary and sufficient robust stability
condition for the two-port NCS is given in the form of
an “arcsine” inequality. The associated robust controller
synthesis problem can be settled by solving a special
one-block H∞ control problem.

We can generalize the current problem setup by
modeling communication channels as two-port networks
with various types of interconnections, such as cascade,
parallel, series, hybrid and so on. In terms of technical
developments, we can extend the current model of two-
port NCSs in the language of the behaviour approach
(Polderman & Willems, 1998) so as to incorporate non-
invertible equipments, such as quantizers.
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Uncertainty in complex networked systems: In
honor of Roberto Tempo (pp. 149–178). Cham:
Springer International Publishing.

Zhao, D., Khong, S. Z., & Qiu, L. (2017). Stabilization
of cascaded two-port networked systems against
nonlinear perturbations. in Proc. 56th IEEE
Conf. on Decision and Contr. (CDC), 1042-1045.

Zhao, D., Khong, S. Z., & Qiu, L. (2020). Stabilization
of cascaded two-port networked systems with
simultaneous nonlinear uncertainties. arXiv:
2008.02152 .

Zhao, D., Qiu, L., & Gu, G. (2020). Stabilization of two-
port networked systems with simultaneous uncer-
tainties in plant, controller, and communication
channels. IEEE Trans. Automat. Contr., 65 (3),
1160-1175.

Zhou, K., & Doyle, J. C. (1998). Essentials of robust
control. Upper Saddle River, NJ: Prentice Hall.

8


