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Abstract

In this paper, we study the stabilization of networked control systems
with multirate sampling. The input channels are modeled in two different
ways. First, each of them is modeled as the cascade of a downsampling
circuit, an ideal transmission system together with an additive norm bounded
uncertainty, and a discrete zero-order hold. Then each input channel is
modeled as the cascade of a downsampling circuit, an ideal transmission
system together with a feedback norm bounded uncertainty, and a discrete
zero-order hold. For each channel model, different downsampling rates are
allowed in different input channels. The minimum total channel capacity
required for stabilization is investigated. The key idea of our approach
is the channel resource allocation, i.e., given the total capacity of the
communication network, we do have the freedom to allocate the capacities
among different input channels. With this new idea, we successfully show
that the multirate networked control system with each channel model can
be stabilized by state feedback under an appropriate resource allocation,
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if and only if the total network capacity is greater than the topological
entropy of the plant. We also apply the result to multirate quantized control
systems. Both the commonly used logarithmic quantizer and the alternative
logarithmic quantizer are considered. For each case, a sufficient condition for
stabilization is obtained which involves a trade-off between the densities of
time quantization and spatial quantization.

Keywords: Networked control system, networked stabilization, multirate
sampling, topological entropy, channel resource allocation.

1. Introduction

Arising from the cross-pollination of control, network and information
theories, the networked control systems (NCSs) have attracted great atten-
tion nowadays. They are control systems wherein the feedback loop is closed
over a communication network. Applications of NCSs have been found in
more and more areas. Examples include mobile sensor networks [25], multi-
agent systems [21] and automated highway systems [28], etc.. In special
issues [1, 2] and the survey papers [12, 23, 13], much information of the
current status of NCSs research has been presented.

In the NCSs, different kinds of information constraints and uncertainties
appear due to the imperfect communication networks, such as quantization
[10, 11], packet drop [9, 30, 32], limited data rate [19, 22] and delay [24, 34],
etc.. Numerous results have been reported in the literature addressing the
stabilization of NCSs under these constraints and uncertainties. For discrete-
time single-input NCSs, in [11], logarithmic quantization of the control inputs
is considered as a sector uncertainty. It is shown that the largest uncertainty
bound which renders stabilization possible is given in terms of the Mahler
measure of the system, i.e., the absolute product of the unstable poles. The
NCS with multiplicative stochastic input channel is studied in [9] which states
that the NCS can be mean-square stabilized by state feedback, if and only if
the mean-square channel capacity exceeds the topological entropy of the plant
which is the logarithm of the Mahler measure. The networked stabilization
over additive white Gaussian noise (AWGN) channel is studied in [4], where
the minimum channel capacity rendering stabilization possible for the single-
input case is given again in terms of the topological entropy of the plant.

For discrete-time multi-input NCSs, the work in [26] models each input
channel in three different ways, i.e., the signal-to-error ratio (SER) model, the
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received signal-to-error ratio (R-SER) model and the AWGN channel model.
The main contribution there is in the introduction of the channel resource
allocation to solve the networked stabilization problem. It is assumed that
the information constraints in the input channels are determined by the
total network recourse available to the channels which can be allocated
by the controller designer. This additional design freedom gives rise to
channel/controller co-design, under which a uniform analytic solution is
obtained for the minimum total channel capacity required for stabilization
with each channel model given again in terms of the topological entropy
of the plant. The multi-input NCSs with multiplicative stochastic input
channels are studied in [32] which generalizes the stabilization condition for
the single input case [9] to the multi-input case by applying the channel
resource allocation.

Researchers have also devoted much effort to the continuous-time net-
worked stabilization. Reference [33] studies stabilization of a continuous-
time LTI system over multiplicative stochastic input channels with channel
resource allocation leading to the minimum total capacity required for
stabilization also given by the topological entropy of the plant. A distributed
control system is investigated in [7] where a central controller communicates
sequentially with the subsystems through one shared communication network
under some periodic communication pattern. Both the communication
pattern and the control law are to be designed, leading to channel/controller
co-design for periodic multirate linear systems. Another work involving
multirate operations in NCSs can be seen in [15] where a subband coding
scheme is proposed to efficiently use the available bit rates and to account
for message losses. The trade-off between the required densities of time
quantization and spatial quantization for stabilization of NCSs has also been
studied in the literature, which is closely related to our work in this paper.
For single-input case, the situation of uniform sampling and infinite-level
logarithmic spatial quantization is considered in [10] and a trade-off between
the densities is obtained in terms of the Mahler measure. In the case when a
finite-level spatial quantizer is used, the trade-off is studied in [16, 17]. There
it is concluded that the minimum data rate for stabilization could only be
achieved by binary control. Unfortunately, so far, no efficient result has been
reported on the trade-off for the multi-input case.

Inspired by the existing results discussed above, we in this paper study
stabilization of continuous-time NCSs with multirate sampling. Partial
results of this study have been reported in [5]. In this work, two different
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channel models are adopted. The first one is the cascade of a downsampling
circuit, an ideal transmission system together with an additive norm bounded
uncertainty, and a discrete zero-order hold. Although this model is motivated
from the logarithmic quantizer studied in [10, 11], it also has the capability
to address other network features. The second model is the cascade of a
downsampling circuit, an ideal transmission system together with a feedback
norm bounded uncertainty, and a discrete zero-order hold. This model is
motivated from an alternative logarithmic quantizer. Each channel model
consists of three components with the second component inherited from the
SER model or the R-SER model proposed in [26]. Different from [26] that
focuses on discrete-time NCSs, in this paper, we start with a continuous-time
multi-input system. The additional downsampling and hold components in
the input channels enable multirate sampling leading to a multirate NCS.
The main novelty of this work is to investigate the minimum total channel
capacity required for stabilization with channel resource allocation, i.e., the
capacities can be allocated among different input channels. Lifting technique
is employed to transform the multirate system to an equivalent LTI system.
We show that for each channel model, the multirate NCS could be stabilized
by state feedback under an appropriate resource allocation, if and only if the
total network capacity is greater than the topological entropy of the plant.
We further apply this result to multirate quantized control systems. Both
the commonly used logarithmic quantizer and the alternative logarithmic
quantizer are considered. For each case, a sufficient condition for stabilization
is obtained which shows a trade-off between the densities of time quantization
and spatial quantization.

Note that the idea of channel resource allocation was first proposed in
the conference paper [14] to study the stabilization of multi-input NCSs and
then extended in [26]. Following this idea, several other works have been
carried out, e.g., [32, 33, 35, 5, 6].

The remainder of this paper is organized as follows. The multirate NCS
is formulated in section 2. Some preliminary knowledge on multirate systems
and lifting technique are presented in section 3. The main result on minimum
capacity required for stabilization is stated and proved in section 4. Section 5
applies the result to the trade-off between the densities of time quantization
and spatial quantization. Section 6 gives an illustrative example. Finally,
some conclusion remarks follow in section 7. The notations in this paper is
more or less standard and will be made clear as we proceed.
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2. Problem Formulation

The setup of a multirate NCS studied in this paper is shown in Figure 1.
We use solid lines for continuous-time signals and dotted lines for discrete-
time signals. The plant is a continuous-time LTI system with state space
realization [A|B]:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

where x(t) ∈ Rn, u(t) ∈ Rm. The sampled states xd(k) = x(kT ) are
available for feedback with sampling interval T . Assume that all hold
and sampling circuits are synchronized at time 0. The control signal
v(k) generated by a static state feedback gain F is transmitted through
a multirate communication network before reaching the plant. In many
practical applications, the actuators are located separately from each other
and from the controller. To fit this case, a parallel transmission strategy
is adopted, i.e., each element vi(k) of the control signal is separately sent
through an independent communication channel. The received control signal
is finally converted to a continuous-time signal by a zero-order hold with
period T .

F

[A|B]- - ��

xd(k)

�
�vm(k)

�v1(k)

Channel m

Channel 1
...

u1(k)

um(k)

6 6

HT
T

Figure 1: A multirate NCS.

In this paper, the communication channels are modeled in two different
ways. The first model, depicted in Figure 2, is the cascade of a downsampling
circuit, an ideal transmission system with a unity transfer function together
with an additive norm bounded uncertainty, and a discrete zero-order hold.
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The uncertainty ∆i can be a nonlinear, time-varying and dynamic system.
The only assumption is that ∆i(0) = 0 is the unique equilibrium point and
its H∞ norm

∥∆i∥∞ = sup
ṽi∈ℓ2

∥ei∥2
∥ṽi∥2

≤ δi

for some δi. As remarked in [26], the channel introduces a multiplicative
uncertainty to the plant. The inverse uncertainty bound δ−1

i can be
considered as the worst case SER. One of the novelties of this paper is
that we allow different downsampling rates Ki in different input channels.
Without loss of generality, assume that K1, K2, . . . , Km are relative prime
integers. The advantage of multirate sampling stands out not only in
theoretical studies but also in practical applications. For example, multirate
downsampling is adopted in [15] to efficiently use the limited data rates in
NCSs. From the practical perspective, in complex, multivariable control
systems, sampling all physical signals uniformly at one single rate is often
unrealistic, then one is forced to use multirate sampling. Also, multirate
sampling can often reduce the required storage space or computational
complexity for signal processing.

- ��
Ki

- l HKi
-

ũi ui

- ∆i

?

vi

eiṽi

Figure 2: An SER channel model.

We define the capacity of channel i to be

Ci =
1

Ti

ln δ−1
i , i = 1, 2, . . . ,m,

where Ti = KiT . This capacity depends linearly on the sampling frequency
1
Ti

and the logarithm of the inverse uncertainty bound δ−1
i . It measures

how much information per time unit can be transmitted through the ith
channel. To measure the amount of information transmitted through the
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whole network per time unit, we define the total network capacity by
summing up all the capacities Ci, i.e., C =

∑m
i=1 Ci.

This channel model is motivated from the use of the logarithmic quantizer
given by the following nonlinear mapping [10]:

ũi = Qδi(ṽi) :=

 ρliξi, if
ρliξi
1+δi

< ṽi ≤ ρliξi
1−δi

,

0, if ṽi = 0,
−Qδi(−ṽi), if ṽi < 0,

(1)

where ξi > 0, 0 < ρi < 1, δi = 1−ρi
1+ρi

, and l = 0,±1,±2, . . . . However,
it can capture not only the logarithmic quantizer but also other unknown
transmission and actuation errors as well.

We are interested in finding the minimum capacities C1,C2, . . . ,Cm so as
to make stabilization of the multirate NCS possible. Intuitively, if the channel
capacities are too small, i.e., sampling rates are too slow or the uncertainty
bounds are too large, then little information of the control signals can be
transmitted and the multirate NCS can hardly be stabilized. Only when
enough information is transmitted per time unit can stabilization become
possible.

Our second channel model, depicted in Figure 3, is the cascade of a
downsampling circuit, an ideal transmission system with a unity transfer
function together with a feedback norm bounded uncertainty, and a discrete
zero-order hold. Again, different downsampling rates Ki are allowed in
different input channels and the uncertainty ∆i can be a nonlinear, time-
varying and dynamic system. The only assumption is that ∆i(0) = 0 is the
unique equilibrium point and its H∞ norm

∥∆i∥∞ = sup
ũi∈ℓ2

∥ei∥2
∥ũi∥2

≤ δi

for some δi. Different from the first model, the channel now introduces a
relative uncertainty instead of a multiplicative uncertainty to the plant input.
The inverse uncertainty bound δ−1

i can be considered as the worst case R-
SER [26] instead of the worst case SER. This implies that the two channel
models have different physical meanings even if they have the same norm
bound. For the second channel model, we define the capacity of channel i as

Ci =
1

Ti

ln δ−1
i , i = 1, 2, . . . ,m,
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Figure 3: An R-SER channel model.

where Ti = KiT . Summing up all the capacities Ci gives rise to the total
network capacity C =

∑m
i=1 Ci.

The second channel model is motivated from the use of an alternative
logarithmic quantizer advocated in [26] which is given by the following
nonlinear mapping:

ũi = Q̃δi(ṽi) :=


ρliξi, if ρliξi(1− δi) < ṽi ≤ ρliξi(1 + δi),
0, if ṽi = 0,

−Q̃δi(−ṽi), if ṽi < 0,
(2)

where ξi > 0, 0 < ρi < 1, δi =
1−ρi
1+ρi

, and l = 0,±1,±2, . . . . One can refer

to [26] for a comparison of this alternative logarithmic quantizer and the
commonly used logarithmic quantizer.

Again, we are interested in finding the minimum capacities C1,C2, . . . ,Cm

so as to make stabilization of the multirate NCS possible.
Before proceeding, we define the topological entropy of a continuous-time

LTI system. Recall that the Mahler measure [18] of a matrix A ∈ Rn×n is

M(A) =
n∏

i=1

max{1, |λi|},

and the topological entropy [3] of A is given by

h(A) = lnM(A) =
∑
|λi|>1

ln |λi|,

where λi are the eigenvalues of A. Here, we take the natural logarithm to be
consistent with the channel capacity notion defined before. In fact, the base
of the logarithm does not affect our main result except for multiplication by
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a constant. Based on the topological entropy of a linear map, we define the
topological entropy of a continuous-time system ẋ(t) = Ax(t) as

Hc(A) = h(eA) =
∑

R(λi)>0

λi,

where λi are the eigenvalues of A.

3. Preliminary - multirate systems and lifting

Consider the multirate NCS in Figure 1. Recall that the downsampling
rates Ki in different input channels are relative prime. Let

N = LCM{K1, K2, . . . , Km},

where LCM means the least common multiple. We can interpret N as the
least common period for the downsampling-hold scheme in different channels.

Lifting [8] is a common and efficient technique to deal with multirate
sampling by converting the multirate system into an equivalent LTI system
with extended input and output dimensions. Specifically, let ℓ be the space
of sequences, perhaps vector valued, defined on the time set {0, 1, 2, . . .}. The
lifting operator over ℓ is given by

Lp : {u(0), u(1), u(2), . . .} 7→




u(0)
u(1)
...

u(p− 1)

 ,


u(p)

u(p+ 1)
...

u(2p− 1)

 , . . .

 .

Note that the lifting operator is invertible and norm preserving [8].
Discretizing the plant [A|B] with period T yields the discretized system:

xd(k + 1) = Adxd(k) +Bdud(k), xd(0) = x0,

where Ad = eAT , Bd =
∫ T

0
eA(T−τ)Bdτ . Denote Bdj as the jth column of Bd.

Since N is the shortest period for which the multirate downsampling-hold
scheme in the input channels repeats itself, we lift the discretized plant to
time period N leading to the following equivalent system with state xe(k) =
xd(kN):

xe(k + 1) = Aexe(k) +Beue(k), xe(0) = x0,
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where

Ae =AN
d , Be = [Be1 Be2 . . . Bem ],

Bej =
[
AN−1

d Bdj AN−2
d Bdj . . . Bdj

]
,

ue(k) =



ud1(kN)
ud1(kN + 1)

...
ud1(kN +N − 1)

ud2(kN)
ud2(kN + 1)

...
ud2(kN +N − 1)

...
udm(kN +N − 1)


.

Examining the detailed structure of ue(k) reveals that it is obtained by
lifting the inputs of each channel first and then grouping them all together.
Clarifying this would make it easier to understand the later design of the
state feedback gain F .

The control signal is generated by the feedback law v(k) = Fxd(k). Let
Fi be the ith row of F . To see the behavior of the controller in the time
period N , we apply the lifting technique to get

ve(k) = Fexe(k) =



F1

F1Ad
...

F1A
N−1
d

F2

F2Ad
...

F2A
N−1
d
...

FmA
N−1
d


xe(k).(3)

Clearly, ve(k) is the lifted controller output. We will come back to the
structure of Fe as shown in (3) when we design the feedback controller in
the next section.

10



As introduced before, different components of the control signal are
transmitted through independent communication channels with different
downsampling rates Ki. Denote Ni = N

Ki
. For the SER channel model

in Figure 2, applying the lifting technique to the transmission process yields

ue = H (I +∆)S ve,

where I is the identity system, ∆ = diag{∆1,∆2, . . . ,∆m} is the lifted
uncertainty with ∆i = LNi

∆iL
−1
Ni
, S = diag{S1,S2, . . . ,Sm} describes

the downsampling scheme of the input channels with Si having dimension
Ni × N , and H = diag{H1,H2, . . . ,Hm} describes the hold scheme with
Hi having dimension N ×Ni. Let S jk

i and H jk
i be the (j, k)th element of

Si and Hi respectively, then

S jk
i =

{
1 when k = (j − 1)Ki + 1,

0 otherwise,

H jk
i =

{
1 when (k − 1)Ki + 1 ≤ j ≤ kKi,

0 otherwise.

Since lifting is norm preserving, we have ∥∆i∥∞ ≤ δi.
Similarly, for the R-SER channel model in Figure 3, applying the lifting

technique to the transmission process yields

ue = H (I −∆)−1S ve,

where ∆, S and H have the same expression as in the SER model case.
So far, we have obtained quite much knowledge on the structure of the

multirate NCS. The lifted closed-loop system would follow directly from the
equivalent LTI systems associated with the plant, controller and network.

Throughout the rest of this paper, the following assumption is made:
NT is nonpathological with respect to A, i.e., λi−λj ̸= 2kπ

√
−1

NT
, k = 1, 2, . . . ,

for any two eigenvalues λi and λj of A [8]. This mild assumption on the
nonpathological sampling period is to make sure that the lifted system [Ae|Be]
does not lose the stabilizability [27]. In view of [20], the closed-loop multirate
NCS is stable if and only if the lifted closed-loop system is stable. Therefore,
our problem becomes to find the stabilizing conditions for the lifted system,
which will be solved in the next section.

Before moving on, it is worth briefly reviewing another useful technique
called Wonham decomposition. It was originally put forward in [31] to

11



solve the multi-input pole placement problem. Given a continuous-time
stabilizable multi-input system [A|B], we can carry out the controllable-
uncontrollable decomposition with respect to the first column of B by a
similarity transformation such that [A|B] is equivalent to[[

A1 ∗
0 Ã2

]∣∣∣∣ [b1 ∗
0 B̃2

]]
.

Then we proceed to do the controllable-uncontrollable decomposition to the
system [Ã2|B̃2] with respect to the first column of B̃2. Continuing this process
yields the following Wonham decomposition


A1 ∗ · · · ∗
0 A2

. . .
...

...
. . . . . . ∗

0 · · · 0 Am


∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗
0 b2

. . .
...

...
. . . . . . ∗

0 · · · 0 bm


 ,(4)

that is equivalent to [A|B], where each subsystem [Ai|bi] is stabilizable.

4. Minimum capacity for stabilization of multirate NCS

This section is to serve the main purpose of this paper, i.e., finding the
minimum channel capacity required for stabilization of the multirate NCS
with each channel model. As we mentioned before, this is equivalent to
find the minimum channel capacity so that a state feedback gain F can be
designed to make the lifted closed-loop system stable. Due to the existence
of more than one uncertainties in the loop, the stabilization will involve a
µ-synthesis problem which is very difficult to solve. However, this difficulty
can be mitigated by the idea of channel resource allocation, as elaborated in
the rest of this section.

4.1. SER model

By the H∞ robust control theory, stabilization of the multirate NCS with
the SER channel model involves H∞ optimization of the complementary
sensitivity function T (z) of the lifted feedback system, where

T (z) = S Fe(zI − Ae −BeH S Fe)
−1BeH .
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If the uncertainty bounds δ1, δ2, . . . , δm and the state feedback gain Fe

are given, the uncertain system is stabilized for all possible uncertainties
satisfying the bounds if and only if [29]

inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞ < 1,(5)

where D is the set of all diagonal matrices with the structure

diag{d1IN1 , d2IN2 , . . . , dmINm}(6)

and

Ψ = diag{δ1IN1 , δ2IN2 , . . . , δmINm}.(7)

Note that if the uncertainties are specifically caused by logarithmic quantiz-
ers, since the quantizers are static without any dynamics, the inequality (5)
may not be necessary for stability of the closed-loop system. We will come
across this situation when we study the multirate quantized control systems
in the next section.

The minimization problem in (5) can be converted to a convex problem
and is hence manageable. However, the design problem, i.e., to find a
stabilizing Fe such that (5) holds, is very difficult. We can formulate the
design problem as the following minimization problem:

inf
Fe stabilizing

[
inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞

]
,(8)

where the infimum is taken over the set of all stabilizing state feedback gain
Fe in the sense that Ae + BeH S Fe is stable. Unfortunately, the objective
function in (8) cannot be converted to a jointly convex problem. In fact, a
deeper look reveals the root of the difficulty: when the uncertainty bounds
are specified a priori, a µ-synthesis problem emerges which is notoriously
hard.

The channel resource allocation provides a significant insight to handle
this difficulty. In the NCSs, quite often the capacity of a channel is
closely related to the resource available to it. If we allocate more resource
to one channel, e.g., use better and more expensive hardware or allocate
more communication bandwidth, then we are able to increase its capacity.
Considering this situation, it is natural and reasonable to consider the total
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channel capacity required for stabilization assuming that the capacities can
be allocated among different channels. In other words, instead of specifying a
priori the capacity of each channel, an overall constraint on the total capacity
is given and the controller designer can allocate the channel capacities in an
optimal way to facilitate the design of the controller. For our current problem,
allocating the channel capacity involves two aspects. One is allocating the
downsampling rates and the other is allocating the uncertainty bounds. By
looking into the structure of Ψ, we find these two aspects are simultaneously
contained in Ψ. Therefore, the overall constraint on the total capacity can
be given in terms of δ = detΨ = Πm

i=1δ
Ni
i . Applying the channel resource

allocation yields a further nested minimization problem:

inf
detΨ=δ

{
inf

Fe stabilizing

[
inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞

]}
.

At first sight, this problem looks even harder than problem (8), however,
surprisingly, it can be analytically solved, as shown in the following theorem.

Theorem 1. The multirate NCS with SER channel model is stabilizable by
state feedback under an appropriate channel resource allocation, if and only
if C > Hc(A).

Proof. For brevity, assume that all the eigenvalues of A lie on the open
right half complex plane. This assumption can be removed following the
same argument as in [26]. Under this assumption, all the eigenvalues of Ae lie
outside the unit circle. By [27], [Ae|Be] is stabilizable if [A|B] is stabilizable
when NT is nonpathological with respect to A as assumed.

To show the necessity part, assume that there exists a stabilizing state
feedback gain Fe and a D ∈ D such that

∥D−1T (z)DΨ∥∞ < 1,(9)

then it is shown in [26] that δ−1 > M(Ae). Since δ
−1 = Πm

i=1(δ
−1
i )Ni ,M(Ae) =

M(AN
d ) = eNT

∑
λi , after some calculations, we have δ−1 > M(Ae) if and only

if C > Hc(A).
To show the sufficiency part, for any given C > Hc(A), we find a D ∈ D,

a stabilizing state feedback gain Fe and a factorization δ = Πm
i=1δ

Ni
i such that

(9) holds. Without loss of generality, we assume that [A|B] has the Wonham
decomposition given by (4), where each subsystem [Ai|bi] is stabilizable
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with state dimension ni. Then the lifted system [Ae|Be] has the following
decomposition:


Ae1 ∗ · · · ∗
0 Ae2

. . .
...

...
. . . . . . ∗

0 · · · 0 Aem


∣∣∣∣∣∣∣∣∣


be1 ∗ · · · ∗
0 be2

. . .
...

...
. . . . . . ∗

0 · · · 0 bem


 .(10)

Since [Ai|bi] is stabilizable, it follows that [Aei|bei ] is stabilizable for all i =
1, 2, . . . ,m.

Choose

D = diag{IN1 , ϵIN2 , . . . , ϵ
m−1INm}(11)

with a small positive real number ϵ. Also define

P = diag{In1 , ϵIn2 , . . . , ϵ
m−1Inm}.(12)

Let F̃e = D−1S Fe, B̃e = BeH D, then

D−1T (z)DΨ = F̃e(zI − Ae − B̃eF̃e)
−1B̃eΨ

= F̃eP (zI − P−1AeP − P−1B̃eF̃eP )−1P−1B̃eΨ,

where

P−1AeP =


Ae1 o(ϵ) · · · o(ϵ)

0 Ae2
. . .

...
...

. . . . . . o(ϵ)
0 · · · 0 Aem

 , P−1B̃e =


be1H1 o(ϵ) · · · o(ϵ)

0 be2H2
. . .

...
...

. . . . . . o(ϵ)
0 · · · 0 bemHm

 ,

(13)

and o(ϵ)
ϵ

approaches to a finite constant as ϵ → 0.
Since C > Hc(A), i.e., δ < M(Ae)

−1, we can always possibly choose
δi such that δNi

i < M(Aei)
−1, i = 1, 2, . . . ,m and δ = Πm

i=1δ
Ni
i . This in

fact realizes the allocation of the individual channel capacity Ci such that
Ci > Hc(Ai) and C =

∑m
i=1 Ci. With this allocation of capacity, we consider

each single-input NCS corresponding to [Ai|bi]. Discretizing [Ai|bi] with time
period KiT yields a discretized system [Asi|bsi ]:

Asi = AKi
di
, bsi =

Ki∑
q=1

AKi−q
di

bdi ,(14)
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where Adi = eAiT , bdi =
∫ T

0
eAi(T−τ)bidτ . Since δNi

i < M(Aei)
−1, it follows

directly that δi < M(Asi)
−1. According to Lemma 2 in [26], a state feedback

gain fi could be designed such that [Asi|bsi ] is stabilized for all uncertainties
satisfying the norm bound δi and the following inequality holds:

∥fi(zI − Asi − bsifi)
−1bsi∥∞δi < 1.

Applying the lifting technique in accordance with time period N yields the
lifted feedback gain

fei =


fi

fiAdi
...

fiA
N−1
di

(15)

and the lifted complementary sensitivity function

Ti(z) = Sifei(zI − Aei − beiHiSifei)
−1beiHi.

Since the lifting operator preserves norms, we have ∥Ti(z)δi∥∞ < 1.
Let F = diag{f1, f2, . . . , fm}. In view of the structure of Fe in (3), we

get F̃eP = D−1S FeP = diag{S1fe1 ,S2fe2 , . . . ,Smfem} + o(ϵ). It can now
be verified that

D−1T (z)DΨ = diag{T1(z)δ1, T2(z)δ2, . . . , Tm(z)δm}+ o(ϵ; z).

Since ∥Ti(z)δi∥∞ < 1 and o(ϵ; z) → 0 as ϵ → 0 for each |z| ≥ 1, it follows
that ∥D−1T (z)DΨ∥∞ < 1 for sufficiently small ϵ which completes the proof.

The overall process of channel resource allocation and controller design
as shown in the above proof constitutes channel/controller co-design. The
controller designer should also participate in the channel design rather than
passively take the channels given by the system designer. With this co-
design, the difficulty caused by the µ-synthesis problem can be mitigated and
the minimum total channel capacity required for stabilization is obtained.
Specifically, for a given total capacity C > Hc(A), a feasible allocation of
C1,C2, . . . ,Cm so that C =

∑m
i=1 Ci is to make Ci > Hc(Ai). To be more

precise, the channel/controller co-design is carried out in the following way:
choose C1 and design f1 so that the first input is used to stabilize all unstable
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modes controllable from the first input; choose C2 and design f2 so that the
second input is used to stabilize the additional unstable modes controllable
from the second input excluding the ones that are already stabilized by the
first input; . . .; finally, choose Cm and design fm to stabilize the remaining
unstable modes that are not stabilized by the other inputs.

Recall that the allocation of capacities involves both the allocation of
downsampling rates Ki and the allocation of uncertainty bounds δi. In fact,
there exists a tradeoff between the choice of Ki and δi. The system with
faster sampling rates can tolerant more uncertainty in terms of stabilization.
Theoretically, Ki and δi can be arbitrarily chosen as long as Ci > Hc(Ai).
However, from practical perspective, sampling rates cannot be arbitrarily
slow due to the limitations on the uncertainty bounds.

4.2. R-SER model

Different from the SER model case, stabilization of the multirate NCS
with the R-SER channel model involves H∞ optimization of the sensitivity
function S(z) of the lifted feedback system, where

S(z) = I + S Fe(zI − Ae −BeH S Fe)
−1BeH .

Precisely, for given uncertainty bounds δ1, δ2, . . . , δm and a stabilizing
state feedback gain Fe, the uncertain system is stabilized for all possible
uncertainties satisfying the bounds if and only if

inf
D∈D

∥∥D−1S(z)DΨ
∥∥
∞ < 1,(16)

where D is the set of all diagonal matrices with the structure in (6) and Ψ
is given by (7).

Similar to the SER model case, due to the existence of multiple
uncertainties in the loop, a µ-synthesis problem arises which is very difficult
to solve. Again, the idea of channel resource allocation can mitigate this
difficulty. The overall constraint of total channel capacity is given in terms
of δ = detΨ = Πm

i=1δ
Ni
i . Applying the channel resource allocation yields the

following minimization problem:

inf
detΨ=δ

{
inf

Fe stabilizing

[
inf
D∈D

∥∥D−1S(z)DΨ
∥∥
∞

]}
.

This problem, again, admits a very nice analytic solution.
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Theorem 2. The multirate NCS with R-SER channel model is stabilizable
by state feedback under an appropriate channel resource allocation, if and
only if C > Hc(A).

Proof. As in the proof of Theorem 1, assume that all the eigenvalues of A
lie on the open right half complex plane.

To show the necessity part, assume that there exists a stabilizing state
feedback gain Fe and a D ∈ D such that

∥D−1S(z)DΨ∥∞ < 1,(17)

then it is shown in [26] that δ−1 > M(Ae) which is equivalent to C > Hc(A).
To show the sufficiency part, for any given C > Hc(A), we find a D ∈ D,

a stabilizing state feedback gain Fe and a factorization δ = Πm
i=1δ

Ni
i such

that (17) holds. As in the proof of Theorem 1, we assume that [A|B] has the
Wonham decomposition given by (4). Choose D as in (11) and define P as
in (12), then

D−1S(z)DΨ =
(
I + F̃e(zI − Ae − B̃eF̃e)

−1B̃e

)
Ψ

=
(
I + F̃eP (zI − P−1AeP − P−1B̃eF̃eP )−1P−1B̃e

)
Ψ,

where F̃e = D−1S Fe, B̃e = BeH D and P−1AeP, P
−1B̃e are given by (13).

Since C > Hc(A), i.e., δ < M(Ae)
−1, we can always possibly choose δi

such that δNi
i < M(Aei)

−1, i = 1, 2, . . . ,m and δ = Πm
i=1δ

Ni
i . Since δNi

i <
M(Aei)

−1, it follows directly that δi < M(Asi)
−1. According to Lemma 2

in [26], a state feedback gain fi could be designed such that [Asi|bsi ] as in
(14) is stabilized for all uncertainties satisfying the norm bound δi and the
following inequality holds:

∥I + fsi(zI − Asi − bsifsi)
−1bsi∥∞δi < 1.

Applying the lifting technique in accordance with time period N yields the
lifted sensitivity function

Si(z) = I + Sifei(zI − Aei − beiHiSifei)
−1beiHi,

where fei is the lifted feedback gain as in (15). Since the lifting operator
preserves norms, we have ∥Si(z)δi∥∞ < 1.
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Let F = diag{f1, f2, . . . , fm}. In view of the structure of Fe in (3), we
get F̃eP = D−1S FeP = diag{S1fe1 ,S2fe2 , . . . ,Smfem} + o(ϵ). It can now
be verified that

D−1S(z)DΨ = diag{S1(z)δ1, S2(z)δ2, . . . , Sm(z)δm}+ o(ϵ; z).

Since ∥Si(z)δi∥∞ < 1 and o(ϵ; z) → 0 as ϵ → 0 for each |z| ≥ 1, it follows
that ∥D−1S(z)DΨ∥∞ < 1 for sufficiently small ϵ which completes the proof.

Note that the remarks following Theorem 1 on the implementation of
the channel/controller co-design and the tradeoff between the downsampling
rates and the uncertainty bounds also apply here.

It is worth stressing that although the minimum total channel capacity
required for stabilization is the same as that in the SER model case, the
optimal feedback gain minimizing ∥S(z)∥∞ is different from that minimizing
∥T (z)∥∞. Moreover, it has been shown in [26] that optimizing ∥S(z)∥∞ is
preferred to optimizing ∥T (z)∥∞. The reason is that optimizing ∥S(z)∥∞
shares a common optimal feedback gain with the optimization of ∥T (z)∥2
and ∥S(z)∥2 involved in many other NCSs, e.g., the ones with fading input
channels or those perturbed by additive white noises. In this sense, the study
with the R-SER channel model provides future potential to investigate NCSs
involving mixed H2/H∞ control problem. In contrast, optimizing ∥T (z)∥∞
is conflicting with optimizing ∥S(z)∥∞, ∥T (z)∥2, ∥S(z)∥2 in the sense that
optimizing one may make the other one far from being optimized.

5. Stabilization of multirate quantized control systems

In this section, we apply the result in section 4 to the case of multirate
quantized control systems. The problem setup is the same as shown in
Figure 1 except that now the network channels are specifically composed
of quantizers. The time quantization is just sampling. For the spatial
quantization, both the commonly used logarithmic quantizer given by (1)
and the alternative logarithmic quantizer given by (2) are considered.

For either of the two quantizers, the channel capacity is given by

Ci =
1

Ti

ln δ−1
i =

1

Ti

ln
1 + ρi
1− ρi

.

Here, 1
Ti

is apparently the time quantization density and ln δ−1
i can be

considered as a measure of the spatial quantization density. Summing up all
the channel capacities gives rise to the total channel capacity C =

∑m
i=1 Ci.
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Both quantizers are nonlinear, however, the uncertainties associated are
static without any dynamics. As we mentioned before, in this case, the
inequality (5) and (16) may not be necessary for the stabilization of closed-
loop system. Nevertheless, we can apply the sufficiency part of Theorem 1
and Theorem 2 to obtain a sufficient condition for the stabilization of
the multirate quantized control systems with each quantizer under channel
resource allocation.

Theorem 3. The multirate quantized control system with either the logarith-
mic quantizer or the alternative logarithmic quantizer is stabilizable by state
feedback under an appropriate channel resource allocation, if C > Hc(A).

Theorem 3 shows a tradeoff between the densities of time quantization
and spatial quantization. If the time quantization is finer, i.e., sampling
faster, then the spatial quantization can be coarser, vice versa. In [10],
this tradeoff has been studied for single-input systems with the logarithmic
quantizer under the assumption that the sampling and hold scheme use the
same time period. There it has been concluded that for a given sampling
interval T , the feedback system can be stabilized if

ρ >
eT

∑
R(λi)>0 λi − 1

eT
∑

R(λi)>0 λi + 1
.

Comparatively, our study is more general. On one hand, multirate sampling-
hold scheme is allowed. On the other hand, the tradeoff is studied not only
for the logarithmic quantizer case but also for the alternative logarithmic
quantizer case. With some simple derivations, we have

ρ >
eT

∑
R(λi)>0 λi − 1

eT
∑

R(λi)>0 λi + 1
⇔ 1 + ρ

1− ρ
> eT

∑
R(λi)>0 λi ⇔ C > Hc(A).

Therefore, Theorem 3 extends the result in [10].

6. An illustrative example

In this section, we give an example to illustrate how the channel/controller
co-design is carried out to stabilize the multirate quantized control system
with either the commonly used logarithmic quantizer or the alternative loga-
rithmic quantizer. The advantage of appropriate channel resource allocation
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is also demonstrated by comparing with the case when inappropriate resource
allocation is used.

Consider an unstable continuous-time system [A|B] with

A =

2 0 0
0 1 0
0 0 1

 , B =
[
B1 B2

]
=

1 0
1 1
0 1

 .

The initial condition used in the simulation is x0 =
[
1 2 1

]′
. Clearly, the

system is stabilizable. However, [A|α1B1+α2B2] is not stabilizable for any
α1, α2 ∈ R, since the matrix

[
λI − A α1B1+α2B2

]
loses row rank when

λ = 1. This means that it is impossible to convert [A|B] to a stabilizable
single-input system by a linear combination of the two inputs. Note that
[A|B] is already in the Wonham decomposition form with

A = diag{A1, A2}, b1 =
[
1 1

]′
, b2 = 1,

where A1 = diag{2, 1} and A2 = 1. The topological entropy of the plant is

Hc(A) = Hc(A1) +Hc(A2) = (2 + 1) + 1 = 3 + 1 = 4.

6.1. The logarithmic quantizer case

Let the overall capacity be given by C = 4.02. Recall that an allocation
such that C1 > Hc(A1) = 3 and C2 > Hc(A2) = 1 subject to C1 + C2 = C is
feasible. Then we first allocate the capacity among the two input channels
as C1 = 3.01,C2 = 1.01. Let T1 = 0.3(sec) and T2 = 0.2(sec), then the
logarithmic quantizers in the two input channels are characterized by δ1 =
e−C1T1 = 0.405 and δ2 = e−C2T2 = 0.817 respectively.

To design the state feedback gain, we discretize the following two
continuous-time single-input systems[

2 0 1
0 1 1

]
and

[
1 1

]
(18)

with time period T1 and T2 respectively. Solving theH∞ optimal complemen-
tary sensitivity for the two discretized systems yields the optimal feedback
gains f1 =

[
−7.758 3.23

]
, f2 = −3.155. Let

F =

[
−7.758 3.23 0

0 0 −3.155

]
.(19)
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With the above co-design of input channels and state feedback gain F , the
continuous-time evolution of the plant states is shown in Figure 4. The state
converges to zero asymptotically. The quantized control signal is shown in
Figure 5.
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Figure 4: State evolution with logarithmic quantizer under appropriate capacity allocation.
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Figure 5: Quantized control signal by logarithmic quantizer.

For comparison, we decrease C1 while keeping C1 + C2 unchanged. An
interesting observation from simulation is that when we allocate C1 and C2

equally, i.e., C1 = C2 = 2.01 and use the sampling period T1 = 0.3, T2 = 0.2,
the closed-loop system with state feedback gain (19) is still stable. This
verifies our previous argument that C1 > Hc(A1) is only sufficient for
stabilization since the logarithmic quantizer is static without any dynamics.
Now we further decrease C1 such that C1 = 0.6,C2 = 3.42. As shown in

22



Figure 6, with the sampling period T1 = 0.3, T2 = 0.2 and the state feedback
gain (19), x1 and x2 diverge which illustrates that the capacity allocated to
the first input channel is not enough.
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Figure 6: State evolution with logarithmic quantizer under inappropriate capacity
allocation.

6.2. The alternative logarithmic quantizer case

Let the overall capacity be again given by C = 4.02. We first allocate
the capacity among the two input channels in an appropriate way as C1 =
3.01,C2 = 1.01. Let T1 = 0.3(sec) and T2 = 0.2(sec), then the alternative
logarithmic quantizes in the two input channels are characterized by δ1 =
e−C1T1 = 0.405 and δ2 = e−C2T2 = 0.817 respectively. We stress that although
δ1 and δ2 appear the same as those in the logarithmic quantizer case under the
same capacity allocation, the physical meanings are different. The alternative
logarithmic quantizer introduces a relative quantization error to the plant
while the commonly used logarithmic quantizer introduces a multiplicative
quantization error to the plant.

The design of the state feedback gain is also different from that in the
logarithmic quantizer case. Solving the H∞ optimal sensitivity instead
of the H∞ optimal complementary sensitivity for the two discretized
systems corresponding to (18) yields the optimal feedback gains f1 =
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[
−7.092 2.953

]
, f2 = −1.819. Let

F =

[
−7.092 2.953 0

0 0 −1.819

]
.(20)

With this co-design of input channels and state feedback gain F , the
continuous-time evolution of the plant states is shown in Figure 7. The state
converges to zero asymptotically. The quantized control signal is shown in
Figure 8.
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Figure 7: State evolution with alternative logarithmic quantizer under appropriate
capacity allocation.
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Figure 8: Quantized control signal by alternative logarithmic quantizer.

Similar to the logarithmic quantizer case, here, we make comparison with
the case when the capacities are allocated as C1 = 0.9,C2 = 3.12. The
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sampling periods are still T1 = 0.3(sec), T2 = 0.2(sec). As shown in Figure
9, with this allocation and applying the state feedback gain (20), x1 and x2

diverge which again illustrates that the capacity allocated to the first input
channel is not enough.
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Figure 9: State evolution with alternative logarithmic quantizer under inappropriate
capacity allocation.

7. Conclusion

In this paper, we study the stabilization of NCSs with multirate sampling.
The input channels are modeled in two different ways, i.e., the SER model
and R-SER model. One of the novelties of this paper is that different
sampling rates are allowed in different input channels leading to a multirate
NCS. With the lifting technique, the stabilization problem of the multirate
NCS is transformed to the stabilization problem of the lifted feedback system.

The main contribution of this work is finding the minimum channel
capacity required for stabilization by applying channel resource allocation.
For a given total channel capacity, the controller designer has the freedom
to allocate the capacities among different input channels while designing
the controller simultaneously. This channel/controller co-design sheds some
light on the trend of integration of the system design and controller design
in future engineering applications. By this co-design, we show that for each
channel model, the multirate NCS can be stabilized by state feedback under
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an appropriate resource allocation, if and only if the total channel capacity is
greater than the topological entropy of the plant. We also apply the result to
multirate quantized control systems. Both the commonly used logarithmic
quantizer and the alternative logarithmic quantizer are considered. For each
case, a sufficient condition for stabilization is obtained which involves a trade-
off between the densities of time quantization and spatial quantization.
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