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Abstract— In this paper, we study stabilization of multi-input
networked control systems over additive white Gaussian noise
channels. Different from the single-input case, which is available
in the literature and boils down to a typical H2 optimal control
problem, the multi-input case involves a judicious allocation of
the total capacity among the input channels in addition to the
design of the feedback controller. With this channel-controller
co-design, we successfully show that a networked multi-input
system over additive white Gaussian noise channels can be
stabilized by state feedback under channel resource allocation,
if and only if the total channel capacity is greater than the
topological entropy of the plant. A numerical example is given
to demonstrate our result.

I. INTRODUCTION

The networked control systems (NCSs) have received
great attention recently. They are feedback systems in which
the plant and controller communicate through the shared
network. Such systems have many applications, including
mobile sensor networks [20], multi-agent systems [19], and
automated highway systems [23], etc. Many papers on this
topic have been published in technical journals and con-
ferences. See the special issues [1], [2], and the references
therein.

One fundamental issue studied in the context of NCS is
stabilization under information constraints due to communi-
cation channels. These constraints take various forms, such
as quantization [9], [13], packet drop [8], data rate constraint
[18] and signal-to-noise ratio (SNR) [4] constraint, etc.
Numerous results for stabilization of NCSs under informa-
tion constraints are reported in the literature. For single-input
NCSs, logarithmic quantization of the control inputs is con-
sidered in [9], [13] which show that the coarsest quantization
density ensuring closed-loop stabilizability is given in terms
of the Mahler measure of the plant, i.e., the absolute product
of the unstable poles. The multiplicative stochastic input
channel has been studied in [8] which states that the NCS can
be mean-square stabilized by state feedback, if and only if the
mean-square capacity of the multiplicative channel exceeds
the topological entropy of the plant that is the logarithm of
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the Mahler measure. For multi-input NCSs, the authors of
[14] model the information constraint in the input channels
as general sector uncertainties including the logarithmic
quantization as a special case. Their main contribution lies
in introducing the channel resource allocation to solve the
networked stabilization problem. Specifically, they assume
that the allowable information constraint is determined by
the total network resource available to the channels that
can be allocated by the controller designer. Thanks to the
additional design freedom gained by the channel resource
allocation, an analytical solution has been obtained which
states that the largest overall uncertainty bound rendering
stabilization is given again in terms of the Mahler measure.
In [26], the multi-input NCSs over multiplicative stochastic
channels are studied. With the help of channel resource
allocation, its authors extend the stabilizability condition in
[8] to the multi-input case. These results shed some light
on the significance and role of channel resource allocation
in NCSs, entailing the idea of channel-controller co-design,
i.e., the control designer should participate in the channel
design rather than passively taking the given channels. This
idea will bring us substantially more freedom and flexibility
in designing NCSs, and is envisioned to be common practice
in future engineering applications. Later one can see that our
main result in this paper can be obtained by allocating the
channel resource judiciously.

Another line of work [4], that is most pertinent to our
work in this paper, models the information constraint for
a single-input NCS as the SNR constraint in an additive
white Gaussian noise (AWGN) channel. The technique of H2

optimal control is used to design the stabilizing controller. A
nice analytic solution is obtained for the minimum channel
capacity required to stabilize the NCS which is also given
in terms of the topological entropy of the plant. Based on
the constrained SNR model, [10], [11], [12] have studied
further the disturbance attenuation issue. These papers show
that the requirement for the channel capacity greater than
the topological entropy of the plant remains to be nec-
essary for feedback stabilization, even if nonlinear time-
varying communication and control laws are used. One
interesting observation from the literature is that the NCS
stabilization problem over an AWGN channel is closely
related to some nonstandard H2 optimal control problem.
This fact will be seen in this paper when we derive our
result later. For the multi-input NCSs over the AWGN chan-
nels, unfortunately, the existing results remain to be quite
incomplete. An investigation is carried out in [16] which
assumes that the total transmission power is constrained



and can be distributed among different channels, leading
to a necessary and sufficient stabilization condition on the
transmission power. Different from the result in [4] that is
given directly in terms of the topological entropy of the plant,
the condition in [16] involves unpleasant computation of the
H2 norm of a transfer function. The latest work in [24]
also studies stabilization over power-constrained Gaussian
channels. A lower bound on the required transmission power
for stabilization is obtained which is not always achievable
by LTI encoders and decoders. Motivated by these existing
results, we study further stabilization of a multi-input NCS
over the AWGN channels in this paper. Instead of assuming
the constrained total transmission power, we assume that
the total capacity of the input channels are constrained and
can be allocated among different channels. By allocating
the channel resource, we successfully derive the minimum
total capacity required for stabilization given also by the
topological entropy of the plant.

The remainder of this paper is organized as follows.
Section II formulates the NCS problem to be studied in this
paper, and Section III provides some preliminary results on
H2 optimal control. The main result is stated and proved in
Section IV. A numerical example is worked out in Section
V to illustrate our main result. The paper is concluded
in Section VI. The notation of this paper is more or less
standard, and will be made clear as we proceed.

II. PROBLEM FORMULATION
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Fig. 1. NCS over AWGN channels.

We consider a discrete-time system described by state-
space equation

x(k + 1) = Ax(k) +Bu(k),

where u(k) ∈ Rm and x(k) ∈ Rn. We will denote this
system by [A|B] for simplicity. Assume that [A|B] is stabi-
lizable and the state variable x(k) is available for feedback
control. For the NCS as shown in Fig. 1, we are interested
in stabilizing [A|B] by a constant state feedback controller
F over a communication network which is modeled as m
parallel AWGN input channels. Here, by parallel, we mean
that each component of the controller output is separately
sent through an independent AWGN channel to the actuator.
Note that we introduce a diagonal scaling matrix Γ with
positive diagonal entries:

Γ = diag{γ1, γ2, . . . , γm}.

Apparently, increasing γi will increase the transmission
power in the ith channel. Therefore, the matrix Γ gives us

an additional design freedom which enables the possibility to
adjust the transmission power in the different input channels.
Such a scaling matrix has also been introduced in the
literature. See for instance [10], [16], [7].

A standard AWGN channel is depicted in Fig. 2, where the
transmitted signal vi and the noise di are zero mean Gaussian
random processes with variances σ̃2

i and σ2
i respectively. By

[5], the SNR of this channel is defined to be

SNRi =
σ̃2
i

σ2
i

,(1)

and the channel capacity is

Ci =
1

2
log(1 + SNRi).

The total capacity of the input channels is then given by

C = C1 + · · ·+ Cm.

Clearly, the larger capacity, or equivalently the larger SNR,
implies that more reliable information can be transmitted
through the channel. Therefore, the capacity Ci measures
the information constraint of the ith channel and the total
capacity C measures the information constraint of the com-
munication network.
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Fig. 2. An AWGN channel.

Assume that all the signals in Fig. 1 are wide sense
stationary and the closed-loop system has reached its steady
state. According to our setup, the total noise d is a vector
white Gaussian noise with covariance

Σ2 =

σ
2
1

. . .
σ2
m

 .

The closed-loop transfer function from the noise d to the
signal v is the complimentary sensitivity function

T (z) = ΓF (zI −A−BF )−1BΓ−1.

Then the power spectrum density of vi is given by

{T (ejω)Σ2T (ejω)∗}ii,

and the mean power of vi is

1

2π

∫ 2π

0

{T (ejω)Σ2T (ejω)∗}iidω,

where {·}ii stands for the ith diagonal element of the matrix.
In view of (1), the SNR of channel i is expressed as

SNRi =
1

2π

∫ 2π

0

{T (ejω)Σ2T (ejω)∗}iidω/σ2
i

=
1

2π

∫ 2π

0

{Σ−1T (ejω)Σ2T (ejω)∗Σ−1}iidω.



Consequently, the capacity of channel i is given by

Ci =
1

2
log

{
I +

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

,

yielding the total channel capacity

C = C1 + · · ·+ Cm

=
1

2
log

m∏
i=1

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

.

Our objective is to find the smallest total channel capacity
such that the NCS over AWGN channels can be stabilized
by a constant state feedback controller, i.e., to find

inf
F :A+BF is stable

C(2)

with given [A|B] and γ1, . . . , γm > 0. This is a difficult
problem. However, by judiciously allocating the channel
resource, we are able to mitigate this difficulty and derive the
same nice analytic solution as in [4] derived for the single-
input case. For this purpose, we assume that the total channel
capacity C is given and can be allocated among different
input channels. The capacity of each channel is determined
by the SNR which is proportional to the transmission power.
Since the matrix Γ enables the possibility to adjust the
transmission power in the different input channels, the total
channel capacity can be allocated indirectly here by choosing
an appropriate Γ. How to allocate the channel resource ap-
propriately for control of NCS can be considered as a case of
channel-controller co-design. The controller designer should
simultaneously design the controller and channels to stabilize
the closed-loop feedback system. Applying this channel-
controller co-design gives rise to the following minimization
problem

inf
γ1,...,γm>0

inf
F :A+BF is stable

C(3)

that is the infimum of the total channel capacity required
for networked stabilization with channel resource allocation.
At first sight, this problem looks even harder than problem
(2). However, surprisingly, it can be analytically solved, as
shown in the remainder of this paper.

Before proceeding, let us recall two notions which were in-
troduced to dynamical systems theory long time ago but only
appeared in the control literature recently. One is the Mahler
measure [17] of an n×n matrix A, denoted by M(A), which
is simply the absolute value of the product of the unstable
eigenvalues of A, i.e., M(A) =

∏n
i=1 max{1, |λi(A)|}.

The second is the topological entropy [3] of A, denoted
by h(A), which is simply the logarithm of M(A), i.e.,
h(A) = logM(A).

III. PRELIMINARY ON H2 OPTIMAL CONTROL

As discussed in the previous section, the NCS stabilization
problem over AWGN channels is closely related to some
nonstandard H2 optimal control problem. Denote T (z) =
F (zI −A−BF )−1. The following lemma studies

Ω =

{
1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω : A+BF is stable
}
,

which is a subset of the partially ordered set (poset) of n×n
positive semi-definite matrices. We briefly review several
concepts [6] in the theory of poset. The infimum of Ω,
denoted as inf Ω, is the greatest lower bound of Ω. The least
element of Ω, if exists, is an element of Ω which is less than
or equal to any other element of Ω. Apparently, the subset
Ω contains a least element if and only if inf Ω ∈ Ω. Denote
the closure of Ω by Ω.

Lemma 1: Let [A|B] be stabilizable. Then inf Ω ∈ Ω.
Proof: We first consider the case when A has no

eigenvalues on the unit circle. By the Parseval’s identity [21],
we have

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω=

∞∑
k=0

(A+BF )′kF ′F (A+BF )k.

The right-hand side of the above equation is precisely the
solution to

P = (A+BF )′P (A+BF ) + F ′F

that is a discrete-time Lyapunov equation. This fact implies
that

Ω={P :P =(A+BF )′P (A+BF )+F ′F,A+BF is stable} .

It is well known from the H2 optimal control theory [22]
that inf Ω = X , where X is the unique stabilizing solution
to the algebraic Riccati equation (ARE)

A′X(I +BB′X)−1A = X.(4)

The corresponding optimal gain F is given by

F = −B′X(I +BB′X)−1A.(5)

Moreover, we have inf Ω = X ∈ Ω, which implies that X
is in fact the least element of Ω . This completes the proof
for the case when A has no eigenvalues on the unit circle.

If A has eigenvalues on the unit circle, the desired
feedback gain (5) cannot be achieved. Therefore, the least
element of Ω does not exist in this case. Nevertheless, we
can let Aϵ = (1 + ϵ)A with ϵ > 0 such that Aϵ has the
same number of eigenvalues inside the unit circle as A
but no eigenvalues on the unit circle. We also define the
subset Ωϵ correspondingly. Applying the above derivation to
system [Aϵ|B] yields that Ωϵ has a least element given by
the stabilizing solution Xϵ to ARE

A′
ϵXϵ(I +BB′Xϵ)

−1Aϵ = Xϵ.

Taking the limit ϵ → 0, we get limϵ→0 Xϵ = X , where X
is the unique semi-stabilizing solution to (4) in the sense
that all the eigenvalues of A − BB′X(I + BB′X)−1A lie
in the closed unit disk. This implies that inf Ω ∈ Ω which
concludes the proof.

Remark 1: The proof of Lemma 1 implies that the eigen-
values of A on the unit circle have no effect on the infimum
of H2 norm of the complementary sensitivity function T (z).
In addition, the system [A|B] can be assumed to have de-

composition [A|B] =

[
As 0 Bs

0 Au Bu

]
, where As is stable



and Au is unstable. By decomposing F into
[
Fs Fu

]
with

compatible dimensions, Fs = 0 can be used in minimizing
the H2 norm of T (z). As a result, the stable eigenvalues of
A also have no effect on the optimization value. Therefore,
we can simply assume that A is anti-stable without loss of
generality when we encounter optimization of T (z) in the
sequel.

The following corollary can be easily deduced from
Lemma 1.

Corrollary 1: Let [A|B] be stabilizable. Then

inf
F :A+BF is stable

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω

)
(6)

= h(A).

Proof: By Remark 1, we only need to consider the case
when A is anti-stable. Applying Lemma 1 together with the
fact that the log determinant function is operator monotone
increasing on the cone of positive definite matrices yields

inf
F :A+BF is stable

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω

)
(7)

=
1

2
log det(I + Γ−1B′XBΓ−1),

where X is the unique stabilizing solution to the ARE

A′X(I +BΓ−2B′X)−1A = X.

Moreover, X > 0 and has a closed form expression

X =

( ∞∑
k=1

A−kBΓ−2B′A′−k

)−1

.

Therefore,

det(I + Γ−1B′XBΓ−1) = det(I +BΓ−2B′X)

= det(X−1A′XA) = M(A)2.

The above equality together with (7) leads to (6) which
concludes the proof.

In our application, we are more interested in a performance
index with the order of T (ejω) and T (ejω)∗ in (6) reversed,
as shown in the following corollary.

Corrollary 2: Let [A|B] be stabilizable. Then

inf
F :A+BF is stable

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)T (ejω)∗dω

)
(8)

≥ h(A).

Proof: For an arbitrary F such that A+BF is stable, the
matrix A′+F ′B′ is also stable. This implies that the system
[A′|F ′] is stabilizable. Moreover, B′ is a stabilizing state
feedback gain. In this case, the complementary sensitivity
function corresponding to [A′|F ′] is T ′(z) = Γ−1B′(zI −
A′ − F ′B′)−1F ′Γ. According to Corollary 1,

1

2
log det

(
I+

1

2π

∫ 2π

0

T ′(ejω)∗T ′(ejω)dω

)
=

1

2
log det

(
I+

1

2π

∫ 2π

0

T (e−jω)T (e−jω)∗dω

)
=

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)T (ejω)∗dω

)
≥ h(A).

Since the choice of stabilizing F is arbitrary, the inequality
(8) follows which concludes the proof.

One can observe that when T (ejω) is normal, i.e.,
T (ejω)T (ejω)∗ = T (ejω)∗T (ejω) for all ω ∈ [0, 2π), the
left-hand side of (8) is the same as that of (6), therefore the
equality in (8) holds. It is natural to ask whether the equality
holds in general. At this moment, we are not sure about this.
Nevertheless, our guess is that the answer is negative.

In the single-input case, the left-hand sides of (6) and
(8) are the same and they are equivalent to a standard H2

optimization problem, which has been studied in some other
places, for instance, [4], [8].

Corrollary 3: Let [A|B] be stabilizable and m = 1. Then

inf
F :A+BF is stable

∥T (z)∥2 = [M(A)2 − 1]1/2.

Proof: This corollary follows from Corollary 1.
Before moving on to the next section, we briefly review

another useful technique called Wonham decomposition. It
was originally put forward in [25] to solve the multi-input
pole placement problem. Given a stabilizable multi-input sys-
tem [A|B], we can carry out the controllable-uncontrollable
decomposition with respect to the first column of B by a
similarity transformation such that [A|B] is equivalent to[[

A1 ∗
0 Ã2

]∣∣∣∣ [b1 ∗
0 B̃2

]]
.

Then we proceed to do the controllable-uncontrollable de-
composition to the system [Ã2|B̃2] with respect to the first
column of B̃2. Continuing this process yields the following
Wonham decomposition


A1 ∗ · · · ∗

0 A2
. . .

...
...

. . . . . . ∗
0 · · · 0 Am


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗

0 b2
. . .

...
...

. . . . . . ∗
0 · · · 0 bm


(9)

that is equivalent to [A|B], where each pair [Ai|bi] is
stabilizable.

IV. MAIN RESULT

The main result of this paper is presented in the following
theorem.

Theorem 1: Let [A|B] be stabilizable. Then the multi-
input NCS over AWGN channels can be stabilized by state
feedback under channel resource allocation, if and only if
C > h(A).

Proof: We only need to show

inf
γ1,...,γm>0

inf
F :A+BF is stable

C = h(A).

In light of Remark 1, we can simply assume that A is
anti-stable. We first prove that for a given stabilizing state
feedback gain F and a scaling matrix Γ, the total channel
capacity C ≥ h(A). Denote B̃ = BΓ−1Σ and F̃ = Σ−1ΓF ,
then [A|B̃] is stabilizable and F̃ is a stabilizing gain for this



system. Let T̃ (z) = F̃ (zI −A− B̃F̃ )−1B̃. By Corollary 2,
we have

1

2
log det

(
I+

1

2π

∫ 2π

0

T̃ (ejω)T̃ (ejω)∗dω

)
=

1

2
log det

(
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

)
≥ h(A).

Therefore,

C =
1

2
log

m∏
i=1

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

≥ 1

2
log det

(
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

)
≥h(A),

where the first inequality follows from Hadamard’s inequal-
ity [15]: for any m×m positive definite matrix Q = [qij ], it
holds det(Q) ≤ Πm

i=1qii and the equality holds if and only
if Q is diagonal.

Without loss of generality, [A|B] is assumed to have the
Wonham decomposition given by (9), where each pair [Ai|bi]
is stabilizable with state dimension ni. Now we show that for
any ϵ > 0, if the total capacity constraint is given by h(A)+
ϵ, then one can find an allocation of this constraint among
the input channels in the form {h(A1) +

ϵ
m , . . . , h(Am) +

ϵ
m} and simultaneously design a feedback gain F such that
the closed-loop system is stable and each channel capacity
satisfies the constraint Ci < h(Ai) +

ϵ
m . The allocation of

channel capacities is done indirectly here by choosing an
appropriate scaling matrix Γ. Specifically, let

Γ−1Σ = diag{1, δ, . . . , δm−1}

with δ a small positive real number. Define

P = diag{In1 , δIn2 , . . . , δ
m−1Inm}.

Then

T̃ (z) = F̃ (zI −A− B̃F̃ )−1B̃

= F̃P (zI − P−1AP − P−1B̃F̃P )−1P−1B̃,

where

P−1AP =


A1 o(δ) · · · o(δ)

0 A2
. . .

...
...

. . . . . . o(δ)
0 · · · 0 Am

 ,

P−1B̃ =


b1 o(δ) · · · o(δ)

0 b2
. . .

...
...

. . . . . . o(δ)
0 · · · 0 bm

 ,

and o(δ)
δ approaches to a finite constant as δ → 0.

For any given total capacity constraint h(A) + ϵ, we can
always find an allocation of the total constraint in the form

{h(A1) +
ϵ
m , . . . , h(Am) + ϵ

m}. By Corollary 3, for each
[Ai|bi], we can design a stabilizing state feedback gain fi
such that ∥Ti(z)∥22 = M(Ai)

2 − 1, where Ti(z) = fi(zI −
Ai − bi)

−1bi. Now let F = F̃P = diag{f1, f2, . . . , fm},
then

Ci =
1

2
log

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

=
1

2
log

{
I +

1

2π

∫ 2π

0

T̃ (ejω)T̃ (ejω)∗dω

}
ii

=
1

2
log
(
1 + ∥Ti(z)∥22

)
+ o(δ)

=
1

2
logM(Ai)

2 + o(δ)

=h(Ai) + o(δ).

By choosing a sufficiently small δ > 0, the actual channel
capacities can be made to satisfy the constraints Ci <
h(Ai) +

ϵ
m for i = 1, . . . ,m. Apparently, the total capacity

satisfies C < h(A) + ϵ.
Theorem 1 solves the problem as formulated in (3), and

provides a necessary and sufficient condition for stabilization
of the multi-input NCS over AWGN channels with the help
of channel resource allocation. The minimum total channel
capacity required for stabilization is equal to the topological
entropy of the plant that is the same as that needed for the
single-input case. We want to emphasize that the channel
capacity allocation is done indirectly here by choosing the
scaling matrix Γ, i.e., by adjusting the transmission power
in the different input channels. The difference from the
setup in [16], [24] lies in that the total channel capacity,
rather than the total transmission power, is assumed to be
constrained. Once again, we witness the benefits brought in
by the channel-controller co-design. With the additional de-
sign freedom gained by the channel resource allocation, the
problem of networked stabilization becomes well formulated
and admits a nice analytic solution.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide an example to illustrate the
result in Section IV. For the sake of numerical computation,
we take the logarithm with base 2 in our example.

Consider an unstable system [A|B] with

A =

8 0 0
0 4 0
0 0 4

 , B =
[
B1 B2

]
=

1 0
1 1
0 1

 .

Clearly, [A|B] is stabilizable. However, [A|α1B1 + α2B2]
is not stabilizable for any α1, α2 ∈ R, since the matrix[
λI −A α1B1+α2B2

]
loses row rank when λ = 4. This

fact implies that it is impossible to convert [A|B] to a
stabilizable single-input system by a linear combination of
the two inputs. The topological entropy of the plant is

h(A) = log2 8 + log2 4 + log2 4 = 7.



As mentioned before, the channel resource allocation in
this case is done by choosing the scaling matrix Γ. Specifi-
cally, let

Γ−1Σ =

[
1 0
0 δ

]
.

To design the state feedback gain, we solve the H2 optimal
T (z) for the following two single-input systems:[

8 0 1
0 4 1

]
and

[
4 1

]
.

The optimal state feedback gains are given by f1 =[
−15.258 3.633

]
and f2 = −3.75, respectively. Let

F =

[
−15.258 3.633 0

0 0 −3.75

]
.

Under this feedback controller, the numerical results on the
channel capacities for different choices of δ are summarized
in Table I.

TABLE I
SIMULATION RESULTS.

δ C1 C2 C
10−1 5.1 2 7.1
10−2 5 + 1× 10−3 2 7 + 1× 10−3

10−3 5 + 1× 10−5 2 7 + 1× 10−5

We can see that as δ → 0, the total capacity C→h(A).
In other words, for any ϵ > 0, when the total channel
capacity constraint is given by h(A) + ϵ, we can always
simultaneously design the state feedback gain F and find an
allocation of the capacities among input channels to stabilize
the closed-loop system. To demonstrate more clearly how the
channel resource allocation is done, let the total capacity
constraint be specifically given by 7+4×10−3. Then we
allocate this constraint among the two input channels as
{5 + 2×10−3, 2 + 2×10−3}. Now we choose δ=10−2 and
use the state feedback gain F designed above. Under this
channel-controller co-design, the channel capacities C1 =
5+ 1× 10−3 < 5+ 2× 10−3,C2 = 2 < 2+ 2× 10−3 as
shown in Table I. The total capacity satisfies the constraint
C=7 +1×10−3<h(A) + ϵ.

VI. CONCLUSION

In this paper, we study stabilization of multi-input NCS
over AWGN channels. The key idea of our approach is
the channel resource allocation. By properly choosing the
scaling matrix Γ, the total channel capacity can be allocated
indirectly among different input channels. The channel re-
source allocation, together with a simultaneous design of
the feedback gain, consists of a channel-controller co-design.
With this co-design, we obtain the minimum total channel
capacity required for stabilization of a multi-input NCS over
AWGN channels given by the topological entropy of the
plant, which is the same as that needed for the single-input
case. A numerical example is given to demonstrate our result.
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