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Abstract— In this paper, we study the stabilization of a
continuous-time networked multi-input system over a shared
communication bus modeled as a fading channel. Transmission
scheduling of the control inputs has to be performed so that only
one input signal is transmitted through the channel at one time.
We aim at finding the minimum channel capacity rendering
state feedback stabilization possible. The main novelty of this
work lies in the idea of scheduling/control co-design which
suggests that the transmission scheduling should be designed
simultaneously with the controller design. By virtue of such
co-design, a nice analytic solution is obtained for the minimum
channel capacity required for stabilization given in terms of
the topological entropy of the plant. A numerical example is
provided to illustrate how the scheduling/control co-design is
carried out to stabilize the networked system.

I. INTRODUCTION

The networked control systems (NCSs) wherein the feed-
back loops are closed over communication networks, are
gaining more and more popularity in engineering practice.
In this work, particular attention is paid to an interesting
scenario when the multiple control inputs of an NCS are
transmitted through one shared communication bus. We are
interested in finding a fundamental limitation on the quality
of the communication bus so as to stabilize the NCS.

To better understand the state-of-the-art research on net-
worked stabilization, we briefly review some results in the
literature. For discrete-time single-input NCSs, the works in
[9], [10] show that the coarsest logarithmic quantization of
the control input rendering stabilization possible is given
in terms of the Mahler measure of the system, i.e., the
absolute product of the unstable poles. The single-input NCS
with fading input channel is studied in [8] which states
that the NCS can be mean-square (MS) stabilized by state
feedback, if and only if the MS channel capacity exceeds the
topological entropy of the plant which is the logarithm of the
Mahler measure. The networked stabilization over additive
white Gaussian noise (AWGN) channel is studied in [3],
where the minimum channel capacity rendering stabilization
possible for the single-input case is given again in terms of
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the topological entropy of the plant. For multi-input NCSs,
reference [12] introduces the idea of channel/controller co-
design, which suggests that the channels and controller
should be designed simultaneously to stabilize the system.
By virtue of such co-design, a uniform analytic solution for
the minimum total channel capacity required for stabilization
is obtained for three different channel models, given again in
terms of the topological entropy of the plant. The discrete-
time multi-input NCSs over parallel fading input channels
are studied in [17] which extends the stabilization condition
for the single-input case [8] to the multi-input case.

Efforts have also been made to discuss the stabilization of
continuous-time NCSs. For example, reference [18] studies
the stabilization of continuous-time multi-input systems over
parallel fading input channels. With channel/controller co-
design, the minimum total channel capacity required for state
feedback stabilization is shown to be given by the topological
entropy of the plant, i.e., the sum of all the unstable poles.
Recently, the work [5] investigates the tradeoff between the
densities of time quantization and spatial quantization in the
input channels required for stabilization of a continuous-time
multi-input NCS.

What drives our effort into this study is the scenario
when the multiple control inputs of an NCS have to share
a small number of communication channels. This happens
frequently in real applications, yet not considered in the
above mentioned works [5], [12], [17], [18], since they all
assume the same number of communication channels as the
number of control inputs. We are particularly interested in
the case, as described in the beginning, when there is only
one shared communication bus. Transmission scheduling of
the control inputs has to be performed so that only one
input signal is transmitted through the bus at one time. Such
scheduling is reminiscent of the celebrated time-division-
multiple-access (TDMA) scheme [19] in the communication
theory to avoid collision when a set of clients are transmitting
information on a shared bus.

We aim at finding a fundamental limitation on the quality
of the communication bus so as to stabilize the NCS. To this
end, we propose the idea of scheduling/control co-design,
i.e., the transmission scheduling is assumed to be designed
simultaneously with the design of the controller. By virtue
of this additional design freedom, a nice analytic solution
for the minimum channel capacity required for stabilization
is obtained, which is again given in terms of the topological
entropy of the plant.

Note that the idea of scheduling/control co-design is
partially inspired from the channel/controller co-design that



was proposed in [12] and applied in several other works such
as [5], [17], [18], etc. The concept of scheduling/control co-
design has been used in the study of the embedded control
systems for the integration of control and computing [16].
Recently, it attracts interests from the research community
of NCSs as well [2], [4], [6].

The remainder of this paper is organized as follows.
Section II formulates the networked stabilization problem.
Section III provides some preliminary knowledge on MS
stabilizability and switched linear systems. The main result
is presented in Section IV which gives the minimum channel
capacity required for stabilization. A numerical example is
given in Section V. Finally, Section VI concludes the paper.

Most notations in this paper are more or less standard
and will be made clear as we proceed. The symbol ⊙ means
Hadamard product. Denote the identity matrix by I , the open
unit disk by D, and the open left half complex plane by C−.
Denote Sn as the space of n×n real symmetric matrices. The
spectrum of a linear operator L from Sn to Sn is defined
to be σ(L )={λ∈C : L (X)=λX,X ∈ Sn, X ̸= 0}. The
MS norm of a transfer function G(s) with dimension p×m,
if exists, is defined to be

∥G(s)∥MS =

√
max

i=1,2,...,p

1

2π

∫ ∞

−∞
[G(jω)G′(−jω)]iidω.

II. PROBLEM FORMULATION

Let us start with a continuous-time linear time invariant
(LTI) system described by the state space model

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

where A ∈ Rn×n and B ∈ Rn×m. We denote the system
as [A|B] for simplicity. Assume that [A|B] is stabilizable
and the state x(t) is available for feedback. The traditional
control theory assumes ideal transmission of the control
inputs to the plant without any errors. It is well known
that under this assumption, the system can be stabilized by
a static state feedback controller u(t) = Fx(t). However,
such state feedback design faces challenges in the network
era due to the various information constraints imposed on
the imperfect communication channels. The setup of the
networked stabilization is shown in Fig. 1.
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Fig. 1. State feedback via transmission channels.

For the single-input case, by nature, one communication
channel suffices to serve the transmission purpose. For the
multi-input case, several recent works [5], [12], [17], [18]
assume that there are the same number of independent
communication channels as the number of the control inputs
between the controller and the actuators. Each channel serves
one and only one control signal transmission. However, there

are applications wherein the input signals have to share a
small number of communication channels. In particular, we
focus on a simple yet fundamental case when there is only
one communication bus serving all the control signals. In
this case, a multiplexer and a de-multiplexer have to be used
so that the bus can serve the control signals one at a time, as
depicted in Fig. 2. The task performed by the multiplexer/de-
multiplexer pair is referred to as transmission scheduling.
Such a shared bus is beneficial for engineering practice due
to the low installment and maintenance cost, especially when
the number of the control inputs is quite large.
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Fig. 2. A shared bus with multiplexer/de-multiplexer pair.

In this work, the shared communication bus is modeled as
a fading channel characterized by the following equation:

r(t) = κ(t)s(t),

where s(t) is the transmitted signal, r(t) is the received
signal and κ(t) is a non-negative white noise process with
mean E[κ(t)] = µ and variance E[(κ(t)− µ)2] = σ2.
The MS capacity of the channel is defined to be C =
1
2SNR

2 = 1
2
µ2

σ2 . It is clear that the capacity of an ideal
channel is infinity. In general, larger capacity indicates that
more reliable information can be transmitted through the
channel. Therefore, the capacity notion can be considered
as a measure of the signal transmission accuracy.

The above NCS over a shared fading channel can be
considered as a special type of switched linear system called
multiple controller system [13] as below:

ẋ(t) = Ax(t) +Bθκ(t)vθ(t), (1)

where θ is the abbreviation for the switching signal θ(t) that
is piecewise constant and takes values from the index set
I = {1, 2, . . . ,m}. Assume that θ(t) = i for t ∈ [t1, t2),
then Bθ = Bi and vθ(t) = Fix(t) for t ∈ [t1, t2), where
Bi is the ith column of B and Fi is the ith row of F . The
switching signal θ(t) represents the transmission scheduling
of the control inputs and is thus referred to as the scheduling
signal in the sequel. A general study for the switched linear
systems can be found in [13].

We are interested in finding the minimum channel capacity
C required for stabilization of the NCS by a static linear
state feedback v(t) = Fx(t). Taking the fading effect in the
channel into consideration, what we mean by stabilization is
in the MS sense that will be clarified later.

Note that periodic scheduling is popular in engineering
design and implementation from the practical perspective.
Moreover, as stated in Theorem 3.11 in [13], the stabilization
of a switched linear system can be accomplished if and only
if it can be accomplished with a periodic scheduling signal.



Therefore, hereinafter we consider the case of periodic
scheduling in the sense that there exists a period T such
that θ(t + T ) = θ(t), ∀t ≥ 0. In particular, without loss
of generality, assume that the control inputs are sequentially
transmitted in the natural order from the first input to the
last input. Denote π =

[
π1 π2 . . . πm

]′ as a probability
vector, where 0 ≤ πi ≤ 1,

∑m
i=1 πi = 1. Then a periodic

scheduling signal can be expressed as

θ(t) =


1, if t ∈ [kT, kT+π1T ),

2, if t ∈ [kT+π1T, kT+(π1+π2)T ),
...
m, if t ∈ [kT+(

∑m−1
i=1 πi)T, (k+1)T ),

(2)

where k = 0, 1, 2, . . . . The vector π is referred to as an
allocation vector since it determines the transmission time
allocated to each control input during one period T .

If the scheduling signal θ(t) is fixed a priori, the only
design freedom is the state feedback gain F . In this case,
unfortunately, it is notoriously hard to find the minimum
channel capacity rendering stabilization possible. To mitigate
this difficulty, we propose the idea of scheduling/control co-
design. Specifically, the scheduling signal θ(t) is not fixed
a priori. Instead, it can be designed simultaneously with the
controller. A judicious design of the transmission scheduling
will greatly facilitate the controller design. By virtue of this
co-design, the networked stabilization problem can be nicely
solved, leading to an analytic solution for the minimum
channel capacity required for stabilization.

Before proceeding, recall that the topological entropy [1]
of a matrix A ∈ Rn×n is given by h(A) =

∑
|λi|>1 ln |λi|,

where λi are the eigenvalues of A. Based on this, we define
the topological entropy of a continuous-time system ẋ(t) =
Ax(t) as H(A) = h(eA) =

∑
R(λi)>0 λi, where λi are the

eigenvalues of A.

III. PRELIMINARY

In this section, some preliminary knowledge on MS
stabilizability as well as switched linear systems is presented.

We first define the concept of MS stabilizability under the
scheduling/control co-design.

Definition 1: [A|B] is said to be MS stabilizable over
a shared fading channel with capacity C if there exist a
scheduling signal θ(t) and a state feedback gain F such that
for every initial state x(0), N(t) , E[x(t)x′(t)] is well-
defined for any t > 0 and limt→∞ N(t) = 0.

As mentioned before, the multi-input NCS over a shared
fading channel can be considered as a switched linear system
given by (1). With the periodic scheduling signal θ(t) as in
(2), applying Itô’s formula [11] to N(t) yields

Ṅ(t)=Li(N(t)), if t ∈

[
kT+

i−1∑
l=1

πlT, kT+

i∑
l=1

πlT

)
, (3)

where i = 1, 2, . . . ,m, k = 0, 1, 2, . . . , and Li is a linear

operator from Sn to Sn given by

Li : X 7→ (A+µBiFi)X +X(A+µBiFi)
′

+ σ2BiFiXF ′
iB

′
i.

Integrating both sides of (3) and discretizing N(t) with
period T yields

N((k+1)T ) = T (N(kT )), k = 0, 1, 2, . . . ,

where T is a linear operator from Sn to Sn given by

T = eπmLmT eπm−1Lm−1T . . . eπ1L1T . (4)

The operator T is said to be stable if σ(T ) ∈ D. One can
easily verify that N(t) → 0 when t → ∞ is equivalent to
N(kT ) → 0 when k → ∞. Hence, the MS stabilization
is accomplished if and only if σ(T ) ∈ D. However, it is
quite difficult to treat T directly which is the multiplication
of exponentials of linear operators. The reason is clarified
as below. Given two linear operators A and B from Sn

to Sn. If A commutes with B, then by the power series
representation of eA and eB, it is easy to see that eAeB =
eA+B. Unfortunately, in general, this relationship does not
hold.

To tackle this difficulty, a formula from Lie algebra known
as the Campbell-Baker-Hausdorff (CBH) formula [7] gives
a way to relate the product eAeB with the sum A+B in the
general case. Precisely, the CBH formula goes as follows:
There exists ϵ > 0 such that for t ∈ (−ϵ, ϵ), there holds

eAteBt = e(A+B)t+ 1
2 [A,B]t2+ 1

12 ([A,[A,B]]+[B,[B,A]])t3+···,

where [A,B] = AB − BA is the commutator product of A
and B. Based on the CBH formula, a method called average
method [13] is developed in the switched system theory to
study the stabilization of switched linear systems. For the
current problem at hand, the following lemma can be easily
shown with the CBH formula. The details of the proof are
omitted for brevity. Similar results can be found in [13], [14].

Lemma 1: Let A1, . . . ,Am be linear operators from Sn

to Sn. Then there exists ϵ > 0 such that when 0 < t < ϵ, it
holds

eAmteAm−1t . . . eA1t = e(
∑m

i=1 Ai)t+o(t),

where o(t)
t → 0 as t → 0.

Applying Lemma 1 to the operator T as in (4) yields

T = e(
∑m

i=1 πiLi)T+o(T ) (5)

for sufficiently small T . In this case, one can approximate
the logarithm of the operator T by the product of T and
an average operator L =

∑m
i=1 πiLi. Thus the networked

stabilization problem amounts to studying L that is precisely
a linear operator from Sn to Sn given by

L : X 7→ (A+BMF )X +X(A+BMF )′

+B(Σ2 ⊙ (FXF ′))B′,



where

M = diag{π1µ, π2µ, . . . , πmµ},
Σ = diag{

√
π1σ,

√
π2σ, . . . ,

√
πmσ}.

The operator L is said to be stable if σ(L )∈C−. Several
criteria in verifying the stability of L is given in the
following lemma. The proof can be referred to [18], [8] and
is thus omitted here for brevity.

Lemma 2: The following statements are equivalent:
(a) σ(L ) ∈ C−.
(b) There exists X > 0 and F such that L (X) < 0.
(c) There exists X > 0 such that

A′X+XA−XBM(Σ2⊙(B′XB))−1MB′X<0. (6)

(d) It holds

inf
D∈D,F :A+BMF is stable

∥D−1T (s)DΦ∥MS < 1, (7)

where T (s) = F (sI−A−BMF )−1BM , Φ = M−1Σ,
and D is the set of all m×m positive diagonal matrices.

Note that if the allocation vector π is fixed a priori,
the search for the optimal F in the optimization prob-
lem (7) is not convex in D. Here, the advantage of the
scheduling/control co-design stands out. We assume that the
allocation vector π can also be designed. In other words, we
can determine the transmission time allocated to each control
input during one transmission period. In such a case, the
objective becomes to simultaneously design the transmission
scheduling and the controller so as to stabilize the NCS. With
this scheduling/control co-design, surprisingly, the above
non-convex optimization problem becomes manageable, as
elaborated in the next section.

IV. MAIN RESULT

The following theorem gives the main result of this work,
i.e., the minimum channel capacity required for networked
stabilization over a shared fading channel.

Theorem 1: [A|B] is MS stabilizable over a shared fading
channel with capacity C if and only if C > H(A).

Proof: Without loss of generality, we assume that all
the eigenvalues of A lie in the open right half complex
plane. This assumption can be removed following the same
arguments as in [3], [5], [12], [17], [18].

We first show the necessity. Assume that there exist a state
feedback gain F and a periodic scheduling signal θ(t) as in
(2) such that the MS stabilization is achieved, then σ(T ) ∈
D. In view of Lemma 1, one can always find a sufficiently
large positive integer N such that T = eLT+o( T

N ) and
thus σ(L ) ∈ C−. By Lemma 2 (c), there exists X > 0
such that the inequality (6) holds. Pre-multiplying and post-
multiplying X− 1

2 on both sides of (6) yields

X− 1
2A′X

1
2 +X

1
2AX− 1

2

−X
1
2BM(Σ2⊙(B′XB))−1MB′X

1
2 < 0.

Taking trace for both sides of the above inequality yields

tr(X− 1
2A′X

1
2 ) + tr(X

1
2AX− 1

2 )

− tr(X
1
2BM(Σ2⊙(B′XB))−1MB′X

1
2 )

=tr(A′) + tr(A)− tr(MB′XBM(Σ2⊙(B′XB))−1)

=2H(A)− 2C < 0,

which completes the proof for the necessity.
To show the other direction, we aim to find a positive

diagonal matrix D, a state feedback gain F together with
an allocation vector π such that the inequality (7) holds. If
that is the case, by Lemma 2, σ(L ) ∈ C−. Then, in view
of (5), one can always choose T sufficiently small to make
σ(T ) ∈ D and thus achieve the MS stabilization. In the
sequel, the desired matrices D, F and the allocation vector
π are constructed.

Without loss of generality, [A|B] is assumed to be of the
form given by the Wonham decomposition [15]


A1 ∗ · · · ∗

0 A2
. . .

...
...

. . . . . . ∗
0 · · · 0 Am


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗

0 b2
. . .

...
...

. . . . . . ∗
0 · · · 0 bm


 ,

where each subsystem [Ai|bi] is stabilizable with state
dimension ni. Clearly, we have

∑m
i=1 ni = n. For each

subsystem [Ai|bi], it has been shown that [3]

inf
fi:Ai+biπiµfi is stable

∥Ti(s)∥22 = 2H(Ai), (8)

where

Ti(s) = fi(sI −Ai − biπiµfi)
−1biπiµ. (9)

We now set

D = diag{1, ϵ, . . . , ϵm−1}

with ϵ a small positive real number. Also define

P = diag{In1 , ϵIn2 , . . . , ϵ
m−1Inm}.

Then

D−1T (s)DΦ

= D−1F (sI−A−BMF )−1BMDΦ

= D−1FP (sI−P−1AP−P−1BMFP )−1P−1BMDΦ

= F (sI−P−1AP−P−1BMDF )−1P−1BMDΦ. (10)

Simple calculations show that

P−1AP =


A1 O(ϵ) · · · O(ϵ)

0 A2
. . .

...
...

. . . . . . O(ϵ)
0 · · · 0 Am

 , (11)

P−1BMD =


b1π1µ O(ϵ) · · · O(ϵ)

0 b2π2µ
. . .

...
...

. . . . . . O(ϵ)
0 · · · 0 bmπmµ

 , (12)



where O(ϵ)
ϵ approaches to a finite constant as ϵ → 0. Since

C > H(A) and H(A) =
∑m

i=1 H(Ai), we can choose πi =
H(Ai)
H(A) satisfying

∑m
i=1 πi = 1 and πiC > H(Ai). We now

set F = diag{f1, f2, . . . , fm} such that Ai+biπiµfi is stable
and ∥Ti(s)∥22 < 2πiC, where Ti(s) is given by (9). The
existence of such fi is guaranteed by (8) and the fact that
πiC > H(Ai). In view of (10), (11) and (12), it can now be
verified that

D−1T (s)DΦ

= diag{ T1(s)√
2π1C

,
T2(s)√
2π2C

, . . . ,
Tm(s)√
2πmC

}+O(ϵ; s),

where O(ϵ; s) → 0 as ϵ → 0. Since ∥Ti(s)∥2 <
√
2πiC, it

follows that ∥D−1T (s)DΦ∥MS < 1 for sufficiently small ϵ.
This completes the proof.

Remark 1: Re-examining the above lines of proof reveals
that the scaling matrix D approximately decomposes [A|B]
into m subsystems [Ai|bi]. The topological entropy of each
subsystem can be regraded as a measure of its degree
of instability. This implies that a subsystem with larger
topological entropy is more unstable and intuitively needs
more communication resource to stabilize it. This intuition
reflexes into the design of the allocation vector π. A feasible
allocation is to make πiC > H(Ai) and thus is not unique.
Taking πi = H(Ai)

H(A) is only one of the feasible allocations.
Such allocation of transmission time shares the same spirit
of the channel resource allocation as in [5], [12], [17], [18],
where the number of communication channels is assumed
to be the same as that of the control inputs. A slight
difference is that in those works, the capacities are directly
allocated among the input channels subject to a total capacity
constraint, while in this work, the communication resource
is allocated indirectly by determining the transmission time
assigned to each control input.

Remark 2: As shown in the proof of Theorem 1, when
the channel capacity is close to the fundamental limitation
given by H(A), fast switching must be used to accomplish
stabilization. However, fast switching may cause unsavory
chattering phenomenon in real applications. To avoid this,
one needs to increase the channel capacity. The underlying
reason goes as follows: When the capacity is larger, one
can design a controller to place the spectrum of the average
operator L more far away to the left of the imaginary axis
and, thus, in light of the CBH formula, a larger switching
period T can be used while the closed-loop stability is
maintained. In the extreme case of an ideal communication
channel, no matter how large T is, one can always stabilize
the system by designing the controller and scheduling signal
appropriately.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we work out an example to illustrate how
the scheduling/control co-design is carried out to stabilize
the multi-input NCS over a shared communication bus.

Consider the following unstable system [A|B]:

A =

2 0 0
0 1 0
0 0 1

 , B =
[
B1 B2

]
=

1 0
1 1
0 1

 ,

with x0 =
[
1 1 1

]′. Clearly, [A|B] is stabilizable. More-
over, it is already in the Wonham decomposition form with

A = diag{A1, A2}, b1 =
[
1 1

]′
, b2 = 1,

where A1 = diag{2, 1} and A2 = 1. The topological entropy
of the plant is

H(A) = H(A1) +H(A2) = (2 + 1) + 1 = 3 + 1 = 4.

The two control inputs are transmitted through a shared
fading channel. Let µ=4, σ2=1.98. The channel capacity is
C = 1

2
µ2

σ2 = 4.04 which is greater than H(A) by one percent.
Theorem 1 implies that in this case, the multi-input NCS can
be MS stabilized under scheduling/control co-design. One
such feasible co-design is carried out as below.

Design the periodic scheduling signal θ(t) as in (2) with

T = 0.1 (sec) and π =
[
H(A1)
H(A)

H(A2)
H(A)

]′
=

[
0.75 0.25

]′
.

For the controller design, we solve the H2 optimal Ti(s) as
in (8) for the following two single-input systems:

[A1|b1π1µ] =

[
2 0 3
0 1 3

]
and [A2|b2π2µ] = [1|1],

yielding the optimal feedback gains f1 =
[
−4 2

]
and f2 =

−2, respectively. Let

F = diag{f1, f2} =

[
−4 2 0
0 0 −2

]
. (13)

With this scheduling/control co-design, the Frobenius norm
of the state covariance N(kT ) converges to zero asymptoti-
cally, as shown in Fig. 3.
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Fig. 3. Evolution of ∥N(kT )∥F when T =0.1, π1=0.75, π2=0.25.

We stress that the transmission scheduling should be
carefully designed, otherwise, the stabilization may not
be accomplished no matter what controller is used. To
illustrate this point, we first change the allocation vector π
to

[
0.74 0.26

]′
while keeping T = 0.1 (sec) unchanged.

In this case, π1C = 2.99 < H(A1) and thus the allocation
vector is infeasible by Remark 1. Indeed, as shown in Fig. 4,
with this transmission scheduling and applying the state



feedback gain (13), ∥N(kT )∥F diverges due to the infeasible
allocation.
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Fig. 4. Evolution of ∥N(kT )∥F when T =0.1, π1=0.74, π2=0.26.

Now we keep the allocation vector π =
[
0.75 0.25

]′
unchanged and increase the scheduling period T gradually.
An interesting observation is that with the increase of T ,
at first the stabilization can still be accomplished until T
reaches ceratin critical value above which the NCS can never
be stabilized. This agrees with our previous argument in
Remark 2 that fast switching is needed when the channel
capacity is quite limited. How to obtain the critical value of
T analytically is challenging and needs more investigation.
Numerically, it can be easily found with a bisection search.
For this example, it is found to be 1.109 (sec). We examine
the case when T =1.15 (sec) and the state feedback gain (13)
is used. As shown in Fig. 5, ∥N(kT )∥F diverges quickly.
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Fig. 5. Evolution of ∥N(kT )∥F when T =1.15, π1=0.75, π2=0.25.

VI. CONCLUSION

In this paper, we study the stabilization of a continuous-
time networked multi-input system over one shared com-
munication bus modeled as a fading channel. Transmission
scheduling of the control inputs has to be performed so that
only one input signal is transmitted through the channel at
one time. Without loss of generality, periodic scheduling is
considered. We aim at finding the minimum channel capacity
under which the state feedback stabilization is possible.

The main novelty of this work lies in the idea of schedul-
ing/control co-design which suggests that the transmission
scheduling should be designed simultaneously with the

controller design. By virtue of such co-design, a nice analytic
solution is obtained for the minimum channel capacity
required for stabilization given in terms of the topological
entropy of the plant. A numerical example is provided to
illustrate how the scheduling/control co-design is carried out
to stabilize the networked system.

The idea developed here can be extended to more general
scenarios when the input signals are transmitted over several
shared communication channels. For the sake of practical
implementation, this work can also be extended to sampled-
data stabilization over shared communication channels. Such
extensions are under our current investigation.
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