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Abstract—In this paper, we study the problem of state feedback
stabilization of a linear time-invariant (LTI) discrete-time multi-
input system with imperfect input channels. Each input channel
is modeled in three different ways. First it is modeled as an ideal
transmission system together with an additive norm bounded
uncertainty, introducing a multiplicative uncertainty to the plant.
Then it is modeled as an ideal transmission system together with
a feedback norm bounded uncertainty, introducing a relative
uncertainty to the plant. Finally it is modeled as an additive
white Gaussian noise channel. For each of these models, we
properly define the capacity of each channel whose sum yields
the total capacity of all input channels. We aim at finding the
least total channel capacity for stabilization. Different from the
single-input case that is available in the literature and boils down
to a typical H∞ or H2 optimal control problem, the multi-input
case involves allocation of the total capacity among the input
channels in addition to the design of the feedback controller. The
overall process of channel resource allocation and the controller
design can be considered as a case of channel-controller co-design
which gives rise to modified nonconvex optimization problems.
Surprisingly, the modified nonconvex optimization problems,
though appear more complicated, can be solved analytically. The
main results of this paper can be summarized into a universal
theorem: The state feedback stabilization can be accomplished
by the channel-controller co-design, if and only if the total input
channel capacity is greater than the topological entropy of the
open-loop system.

Index Terms—Networked control system, networked stabi-
lization, Mahler measure, topological entropy, channel resource
allocation.

I. INTRODUCTION

THE networked control systems (NCSs) have received
great attention recently. They are feedback systems in

which the plant and controller communicate through a shared
network. Such systems have wide applications, including
mobile sensor networks [35], multi-agent systems [31], and
automated highway systems [40], etc. Many papers on this top-
ic have been published in technical journals and conferences.
See the special issues [1], [2], and the references therein, as
well as the survey papers [20], [33], [21].

A fundamental issue in networked control is stabilization
under information constraint in the input channels. Such
information constraint takes various forms in different studies,
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such as data-rate constraint [3], [32], quantization [14], [18],
signal-to-noise ratio (SNR) constraint [7], [29], packet drop
[43], [13], [46], quantization and packet drop [44], delay [34],
[47], etc. For instance, the authors of [14] study stabilization
of single-input systems using logarithmic quantized state
feedback in the input channel. Based on the Lyapunov func-
tion approach, they obtain the coarsest quantization density
required for quadratic stabilization in terms of the Mahler
measure of the plant, i.e., the absolute product of the unstable
poles. The multiplicative stochastic input channel has been
studied in [13] which states that the NCS can be mean-square
stabilized by state feedback, if and only if the mean-square
capacity of the multiplicative channel exceeds the topological
entropy of the plant that is the logarithm of the Mahler
measure. These results shed some light on the essential role
of the Mahler measure, or the topological entropy, that can
be considered as a measure of the degree of instability of the
open-loop system. Another example supporting this argument
can be found in [39], which studies the connections between
observability and optimal control via data-rate constrained
channels and topological entropy of the plant.

Following the work in [14], the coarsest quantization density
has been investigated for multi-input systems in several papers.
For instance, a single quantizer is employed in [27], [25] by
jointly quantizing the multi-input signals. A logarithmic quan-
tizer is constructed in [27] based on a given control Lyapunov
function by quantizing the state space into ellipsoids. In [25],
the coarsest quantization is studied with respect to a given
control Lyapunov function for a class of multi-input systems
that can be stabilized using a one-dimensional subspace of
the input space. In [19], instead of a single quantizer, the
authors use separate quantizers at different inputs. They
utilize a quantization dependent control Lyapunov function to
obtain a sufficient condition for stabilization given by linear
matrix inequalities (LMIs). While all the above mentioned
works on quantized feedback stabilization are based on the
Lyapunov function method, a different approach is introduced
in [18]. This approach regards the information distortion
induced by the logarithmic quantizers in the input channels as
sector bounded uncertainties. By using the H∞-based robust
control technique, the coarsest quantization density required
for stabilization in [14] can be recovered for single-input
systems.

Another line of work in the literature studies stabilization of
NCSs over additive white Gaussian noise (AWGN) channels.
For the single-input case, [7] obtains a nice analytic solution
for the minimum channel capacity required for stabilization
which is again given in terms of the topological entropy of
the plant. Based on this work, [15], [16], [17] have studied
further the disturbance attenuation issue. These papers show
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that the requirement for the channel capacity greater than the
topological entropy of the plant remains to be necessary for
feedback stabilization, even if nonlinear time-varying commu-
nication and control laws are used. A different investigation is
carried out in [29] which studies stabilization of an NCS over
parallel power-constrained AWGN output channels via LTI
controllers. The minimum total transmission power required
for stabilization is given in terms of the H2 norm of certain
transfer function. Finally the latest work in [42] studies
state feedback stabilization over power-constrained Gaussian
channels. A lower bound on the required transmission power
for stabilization is obtained which is not always achievable by
LTI encoders and decoders.

Inspired by the existing results discussed above, we investi-
gate state feedback NCS stabilization for multi-input systems.
In our setup, the transmission from the controller to the plant
input is via non-ideal communication channels. Partial results
of this study have been reported in the conference papers
[23], [24], [9]. In this paper, the input channels are modeled
in three different ways. Firstly, each of them is modeled
as an ideal transmission system together with an additive
norm bounded uncertainty that is not necessarily a quantizer,
neither memoryless nor time-invariant. Although this model is
motivated from the logarithmic quantizer studied in [14], [18],
it has the potential to capture many other network features
such as packet drops and transmission delays. Secondly,
each input channel is modeled as an ideal transmission
system together with a feedback norm bounded uncertainty,
which is motivated from an alternative scheme of logarithmic
quantization. Finally, each input channel is modeled as a
standard AWGN channel. For each of these models, we
properly define the capacity of each channel to measure its
information constraint whose sum yields the total channel
capacity. Our objective is to find the minimum total channel
capacity required for the stabilization of multi-input NCSs.
Since each input channel suffers from information distortion,
a µ-type control problem arises which is very difficult to
solve. To mitigate this difficulty, we introduce the channel
resource allocation as a new twist. Instead of imposing the
information constraints specified a priori as in µ-synthesis,
we assume that they are determined by the resource available
to the channels which can be allocated by the controller
designer subject to a total resource constraint. With this new
twist, rather surprisingly, the stabilization problem under each
channel model becomes analytically solvable, and the solution
is again given in terms of the Mahler measure or topological
entropy of the plant as in various studies in [3], [32], [14],
[18], [7] for single-input systems.

In this paper, capacity notions are defined for all channel
models considered for the convenience of problem formulation
and the aesthetics of result statements. They can be regarded
as measures of signal transmission accuracy in the channels.
However, they are defined in different ways from the Shannon
capacity in the information theory [10]. In particular, the
capacities for the first and second channel models are defined
deterministically while the principle feature of Shannon’s
information theory is its stochastic foundation. The capacity
for the third channel model, an AWGN channel, happens

to be the same as the Shannon capacity. It is now well
recognized that the Shannon capacity is in general not enough
to characterize the information requirement for channels in
a feedback system due to the causality constraint in the
information processing in a feedback loop. How to define
a capacity suitable for channels in a feedback system from
an information-theoretic point of view is recently attracting
considerable attention in the research community. An attempt
is made in [38]. Our definition of capacity for the first two
channel models studied in this paper suggests the potential to
define capacity in a purely deterministic way.

The remainder of this paper is organized as follows. Section
II formulates the networked stabilization problem to be studied
in this paper under each of the three channel models. Section
III provides some preliminary results on H∞ and H2 optimal
sensitivity and complementary sensitivity. The minimum ca-
pacity required for stabilization under each channel model is
investigated in Sections IV, V, VI respectively. A numerical
example is worked out in Section VII to illustrate our results.
The paper is concluded in Section VIII. To highlight the main
results, all proofs in Section III are presented in the Appendix.
The notation of this paper is more or less standard, and will
be made clear as we proceed.

II. PROBLEM FORMULATION

Consider a discrete-time system described by state-space
equation

x(k + 1) = Ax(k) +Bu(k),

where u(k) ∈ Rm and x(k) ∈ Rn. Denote this system by
[A|B] for simplicity. Assume that [A|B] is stabilizable and
that the state vector x(k) is available for feedback control.
We are interested in stabilizing the system by a constant state
feedback. Different from the standard setup more than 40 years
ago, for instance [45], the signal transmission in the network
era is implemented via communication channels. We focus on
controller-actuator channels. The new setup is shown in Fig. 1.
Parallel transmission strategy is used, i.e., each component
vi of v is transmitted through an independent communication
channel.

F - Channels - [A|B]

6

v u

x

Fig. 1: State feedback via transmission channels.

How a communication channel, especially the one in feed-
back control, should be modeled is a big issue. There is a
vast literature on this issue, and different channel modeling
gives rise to a different control method. Three different channel
models are considered in this paper, as elaborated in the
following.

A. SER model

The first model is motivated by the logarithmic quantization
studied in [14] and the realization that it is a sector nonlinearity
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in [18]. Each channel is modeled as an ideal transmission
system with a unity transfer function together with an additive
norm bounded uncertainty, as shown in Fig. 2. The uncertainty
∆i can be a nonlinear, time-varying, and dynamic system. We
assume that ∆i(0) = 0 is the unique equilibrium point and its
ℓ2-induced norm

∥∆i∥∞ = sup
vi∈ℓ2

∥ei∥2
∥vi∥2

≤ δi

for some δi > 0. In this model, the channel introduces
a multiplicative uncertainty to the plant. This uncertainty
can be used to model the possible transmission errors due
to quantization, signal distortion, as well as other inherent
uncertainty in the plant input due to actuator inaccuracy. We
define the capacity of channel i as Ci = log δ−1

i = − log δi.
The inverse of the norm bound δ−1

i can be considered as the
worst case signal-to-error ratio (SER), since

∥∆i∥−1
∞ = inf

vi∈ℓ2

∥vi∥2
∥ei∥2

≥ δ−1
i .

Clearly, larger δi indicates that less reliable information can
be transmitted through the channel. Therefore, the capacity
Ci measures properly the information constraint in the ith
input channel. Summing up all the capacities Ci, we obtain
the total channel capacity given by C = C1 + · · · + Cm =
− log(δ1 · · · δm).

- j -

- ∆i

?
vi ui

ei

Fig. 2: An SER channel model.

One strong motivation for this channel model is the use
of the logarithmic quantizer advocated in [14]. A logarithmic
quantizer, depicted in Fig. 3, is defined by the following
nonlinear mapping:

ui = Qδi(vi) :=


ρliξi, if ρl

iξi
1+δi

< vi ≤ ρl
iξi

1−δi
,

0, if vi = 0,
−Qδi(−vi), if vi < 0,

where ξi > 0, 0 < ρi < 1, δi = 1−ρi

1+ρi
, and l = 0,±1,±2, . . . .

For such a quantizer, the quantization error admits a norm
bound

∥ui − vi∥2
∥vi∥2

≤ δi.

Apparently, this logarithmic quantizer belongs to the SER
channel model described earlier. However, we also stress that
our channel model covers not only logarithmic quantization,
but also other unknown transmission and actuation errors. One
distinction between this SER model and the pure quantization
model is that the controller has no way to know the received
signal u even though it knows the transmitted signal v exactly.

We are interested in finding the worst channel quality such
that the state feedback stabilization is possible. That is, we
are interested in finding the minimum possible capacities
C1,C2, . . . ,Cm such that the feedback gain F can be designed

-

6

vi

ui

Fig. 3: A logarithmic quantizer.

to stabilize the closed-loop system. When applied to the case
of logarithmic quantizer, this problem corresponds to finding
the coarsest quantizers so that the state feedback stabilization
is possible. When there are several input channels, what it
means by minimum capacities or coarsest quantizers needs
clarification, and will be made precise later.

B. R-SER model

The second channel model consists of an ideal transmission
system with a unity transfer function together with a feedback
norm bounded uncertainty [24], as shown in Fig. 4. Again, the
uncertainty ∆i can be a nonlinear, time-varying, and dynamic
system. We assume that ∆i(0) = 0 is the unique equilibrium
point and its ℓ2-induced norm

∥∆i∥∞ = sup
ui∈ℓ2

∥ei∥2
∥ui∥2

≤ δi

for some δi > 0. In this model, the channel introduces
a relative uncertainty to the plant. We define the capacity
of channel i as Ci = log δ−1

i = − log δi to measure the
information constraint in the channel. The inverse of the norm
bound δ−1

i can be considered as the worst case received signal-
to-error ratio (R-SER), since

∥∆i∥−1
∞ = inf

ui∈ℓ2

∥ui∥2
∥ei∥2

≥ δ−1
i .

Larger δi indicates that less reliable information can be
transmitted through the channel. Summing up all the capacities
Ci, we obtain the total channel capacity given by C =
C1 + · · ·+ Cm = − log(δ1 · · · δm).

- j -

�∆i
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Fig. 4: An R-SER channel model.
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Fig. 5: An alternative logarithmic quantizer.

One strong motivation for this channel model is the use
of an alternative scheme of the logarithmic quantizer. The
alternative scheme, depicted in Fig. 5, is defined by the
following nonlinear mapping:

ui = Q̃δi(vi)

:=


ρliξi, if ρliξi(1−δi) < vi ≤ ρliξi(1+δi),
0, if vi = 0,

−Q̃δi(−vi), if vi < 0,

where ξi > 0, 0 < ρi < 1, δi = 1−ρi

1+ρi
, and l = 0,±1,±2, . . . .

A casual look at Fig. 3 and Fig. 5 may not see their difference,
but a closer look reveals that the 45◦ dashed line in Fig. 3,
representing the ideal transmission with ui = vi, halves the
vertical segments between the dotted lines, whereas the 45◦

dashed line in Fig. 5 halves the horizontal segments between
the dotted lines. For such an alternative logarithmic quantizer,
the quantization error admits a norm bound

∥ui − vi∥2
∥ui∥2

≤ δi.

Apparently, it belongs to the R-SER channel model described
earlier. We advocate the use of this alternative logarithmic
quantizer over the commonly used one since it leads to a better
optimization problem. This point is a major novelty of this
paper and will be justified in details in subsequent sections.

We are again interested in finding the minimum possible
C1,C2, . . . ,Cm such that the feedback gain F can be designed
to stabilize the closed-loop system. When applied to the alter-
native logarithmic quantizer in Fig. 5, it corresponds to finding
the coarsest quantizers required for feedback stabilization.

C. SNR model
The third channel model is the standard AWGN channel

often used in information theory, as shown in Fig. 6. Here
the transmitted signal vi and the noise di are assumed to be
zero mean Gaussian random processes. Their variances are
assumed to be σ̃2

i and σ2
i , respectively. By [10], the SNR of

this channel is defined to be

SNRi =
σ̃2
i

σ2
i

, (1)

and the channel capacity is Ci =
1
2 log(1 + SNRi). The total

capacity of the input channels is given by C = C1+ · · ·+Cm.

- ?j -
vi ui

di

Fig. 6: An AWGN channel.

Clearly, the larger capacity, or equivalently the larger SNR,
implies that more reliable information can be transmitted
through the channel. Therefore, the capacity Ci measures
properly the information constraint of the ith channel and the
total capacity C measures the information constraint of the
whole communication network. Again, we are interested in
finding the minimum possible C1,C2, . . . ,Cm such that the
feedback gain F can be designed to stabilize the closed-loop
system.

III. BACKGROUND MATERIALS - OPTIMAL SENSITIVITY
AND COMPLEMENTARY SENSITIVITY

Before proceeding, let us recall two concepts which were
introduced to dynamical system theory long time ago but only
appeared in the control literature recently. One is the Mahler
measure [30] of an n×n matrix A, denoted by M(A), which
is simply the absolute value of the product of the unstable
eigenvalues of A, i.e., M(A) =

∏n
i=1 max{1, |λi(A)|}. The

other is the topological entropy [6] of A, denoted by h(A),
that is simply the logarithm of M(A), i.e., h(A) = logM(A).

For the sake of brevity, all proofs in this section are
presented in the Appendix.

Consider the feedback system in Fig. 1 and assume that the
channels are ideal temporarily. The complementary sensitivity
function and sensitivity function at the plant input are

T (z) = (I − F (zI −A)−1B)−1F (zI −A)−1B

= F (zI −A−BF )−1B,

S(z) = (I − F (zI −A)−1B)−1

= I + F (zI −A−BF )−1B = I + T (z),

respectively.
To prepare for this section as well as later sections, we

first consider a special state feedback H∞ control problem
in which the objective function is the H∞ norm of a scaled
convex combination of S(z) and T (z):

∥[θS(z) + (1− θ)T (z)]W∥∞ = ∥[T (z) + θI]W∥∞

where θ ∈ [0, 1] and W ∈ Rm×m is a constant weighting
matrix. The discrete-time state feedback H∞ control has been
studied in the literature [5], [22], [48] which can be specialized
to our problem.

Lemma 1: Assume that [A|B] is stabilizable. Then there
exists a stabilizing state feedback gain F such that ∥[θS(z)+
(1−θ)T (z)]W∥∞ < 1, if and only if there exists a stabilizing
solution X ≥ 0 to the following algebraic Riccati equation
(ARE):

A′X
[
I +B(I − (1− θ)2WW ′)B′X

]−1
A = X
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satisfying W ′(θ2I +B′XB)W < I . If such an X ≥ 0 exists,
then a desired F is given by

F = −B′X
[
I +B(I − (1− θ)2WW ′)B′X

]−1
A.

What we are really interested in this paper is the cases when
θ = 0 and θ = 1, as shown in the following lemma.

Lemma 2: Assume that A is unstable and [A|B] is stabiliz-
able.

1) If m = 1, then

inf
F stabilizing

∥S(z)∥∞ = inf
F stabilizing

∥T (z)∥∞ = M(A).

2) If m > 1, then

ρ(A)≤ inf
F stabilizing

∥S(z)∥∞= inf
F stabilizing

∥T (z)∥∞≤M(A).

We would like to point out that in the case when A is a
stable matrix, there hold

inf
F stabilizing

∥T (z)∥∞ = 0 and inf
F stabilizing

∥S(z)∥∞ = 1.

Both infimums are achieved by the trivial optimal feedback
gain F = 0.

After presenting the H∞ optimal values of S(z) and T (z),
we now turn our attention to the H2 optimal values of S(z)
and T (z), as shown in the next lemma.

Lemma 3: Assume that [A|B] is stabilizable. Then

inf
F stabilizing

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω

)
=h(A),

(2)

inf
F stabilizing

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)T (ejω)∗dω

)
≥h(A).

(3)

One can observe that when T (ejω) is normal, i.e.,
T (ejω)T (ejω)∗ = T (ejω)∗T (ejω) for all ω ∈ [0, 2π), the
left-hand side of (3) is the same as that of (2), and therefore
the equality in (3) holds. It is natural to ask whether the
equality holds in general. At this moment, we are not sure
about this. Nevertheless, our guess is that the answer is
negative.

In the single-input case, the left-hand sides of (2) and (3) are
the same and they are equivalent to a standard H2 optimization
problem, which has been studied in some other places, for
instance, [13], [7]. Lemma 3 and the fact that ∥S(z)∥22 =
∥T (z)∥22 + 1 immediately result in the following corollary.

Corollary 1: Assume that [A|B] is stabilizable and m = 1.
Then

inf
F stabilizing

∥T (z)∥2 = [M(A)2 − 1]1/2,

inf
F stabilizing

∥S(z)∥2 = M(A).

Remark 1: The above investigation is mostly concerned
with finding the minimal values of the H∞ norm and H2 norm
of S(z) and T (z). Without loss of generality, assume that A is
anti-stable. Then one interesting observation from the proofs in
the Appendix is that the minimization of ∥S(z)∥∞, ∥S(z)∥2

and ∥T (z)∥2 share a common optimal gain F that is given
by (29) in the Appendix, where X is the unique stabilizing
solution to ARE (23). Moreover,

A+BF = A−BB′X(I +BB′X)−1A

= (I +BB′X)−1A = X−1A′−1X.

The above equality indicates that the optimal control law
(29) in the Appendix actually moves the unstable poles of
the system to their mirror images with respect to the unit
circle. As for the minimization of ∥T (z)∥∞, it admits a
different optimal control law. This can be seen from ARE (24)
whose corresponding feedback gain is different from that
of ARE (23). As a consequence, optimizing ∥S(z)∥∞ is
preferred to optimizing ∥T (z)∥∞ since the minimization of
∥S(z)∥∞ simultaneously minimizes ∥S(z)∥2 and ∥T (z)∥2.
This fact will become more clear as we proceed.

Before moving on to the next section, we briefly review
another useful technique called Wonham decomposition. It
was originally put forward in [45] to solve the multi-input
pole placement problem. Given a stabilizable multi-input
system [A|B], we can carry out the controllable-uncontrollable
decomposition with respect to the first column of B by a
similarity transformation such that [A|B] is equivalent to[[

A1 ∗
0 Ã2

]∣∣∣∣ [b1 ∗
0 B̃2

]]
.

Then we proceed to do the controllable-uncontrollable decom-
position to the system [Ã2|B̃2] with respect to the first column
of B̃2. Continuing this process yields the following Wonham
decomposition


A1 ∗ · · · ∗

0 A2
. . .

...
...

. . . . . . ∗
0 · · · 0 Am


∣∣∣∣∣∣∣∣∣∣


b1 ∗ · · · ∗

0 b2
. . .

...
...

. . . . . . ∗
0 · · · 0 bm


 , (4)

that is equivalent to [A|B], where each pair [Ai|bi] is stabiliz-
able.

IV. MULTI-INPUT STATE FEEDBACK STABILIZATION–SER
MODEL

Starting from this section, we are dedicated to finding the
minimum channel capacity required for stabilization under
each of the aforementioned three channel models.

We first study the case when the SER channel model
is adopted. In this case, the networked feedback system
is shown in Fig. 7, where ∆ = diag{∆1,∆2, . . . ,∆m}.
Such a diagonal ∆ is called structured uncertainty. Handling

F -

- ∆
?j- [A|B]

6 x

v u

e

Fig. 7: NCS with SER channel model.

such uncertainties in feedback control involves a µ-synthesis
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problem which is usually difficult. If the uncertainty bounds
δ1, δ2, . . . , δm and a stabilizing feedback gain F are given,
then the uncertain system is stabilized for all possible uncer-
tainties satisfying the bounds, if and only if [41]

inf
D∈D

∥D−1T (z)DDδ∥∞ < 1 (5)

where Dδ = diag {δ1, δ2, . . . , δm} and D is the set of all
m × m diagonal matrices with positive diagonal entries.
The minimization problem in (5) can be converted to a
convex problem, and is hence manageable. However the design
problem, which aims to find a stabilizing F such that (5)
holds, is notoriously hard. This design problem is more or
less equivalent to the minimization problem

inf
F stabilizing

[
inf
D∈D

∥D−1T (z)DDδ∥∞
]
, (6)

which cannot be converted to a jointly convex problem.
In networked control, very often the channel capacity Ci, or

equivalently, the SER δ−1
i is associated with certain resource.

If we allocate more resource to the ith channel, then we
are able to increase its capacity. For example, the use of
better and more expensive hardware in the ith channel may
increase Ci; allocation of more communication bandwidth to
the ith channel may also increase Ci. Then in the networked
control problem, we may have an overall constraint on the
total available resource but we do have the freedom to allocate
the resource among different channels. Let us assume that the
overall resource constraint is given in terms of C =

∑m
i=1 Ci.

In this case, what we mean by finding the minimum possible
capacities in the input channels is to find the minimum total
capacity C that renders stabilization possible under channel
resource allocation. The control problem with channel resource
allocation can be considered as a case of channel-controller co-
design. The controller designer is in the position to allocate
Ci optimally among the channels and simultaneously design
the feedback gain so that the expression in (6) is minimized.
Notice that allocating Ci with a given total capacity C is
equivalent to allocating the error bounds δi with a given δ =∏m

i=1 δi. Applying the channel-controller co-design gives rise
to a further nested minimization problem: given stabilizable
[A|B] and δ > 0, find

inf
detDδ=δ

{
inf

F stabilizing

[
inf
D∈D

∥D−1T (z)DDδ∥∞
]}

.

This problem looks even harder than (6) and is highly
nonconvex, but rather surprisingly, it admits a very nice
analytic solution.

Theorem 1: Assume that [A|B] is stabilizable. Then the
NCS with SER channel model can be stabilized by state
feedback under channel resource allocation, if and only if
C > h(A).

Proof: The condition C > h(A) is equivalent to inf C =
h(A). We only need to show

inf
detDδ=δ

{
inf

F stabilizing

[
inf
D∈D

∥D−1T (z)DDδ∥∞
]}

=

{
0, if A is stable;
δM(A), if A is unstable.

The case when A is stable is trivial. One can just set F = 0.
For the case when A is unstable, in light of Remark 2 in the
Appendix, we assume that A is anti-stable for brevity. We
first show that if there exist a stabilizing F and a nonsingular
diagonal D such that

∥D−1T (z)DDδ∥∞ < 1, (7)

then there holds

δ =

m∏
i=1

δi < M(A)−1. (8)

Rewrite

D−1T (z)D = F̃ (zI −A− B̃F̃ )−1B̃

with F̃ = D−1F and B̃ = BD. Lemma 1 can be applied to
conclude that (7) is equivalent to the existence of X > 0 such
that

X = A′X
[
I + B̃(I −D2

δ)B̃
′X
]−1

A, (9)

I > DδB̃
′XB̃Dδ. (10)

Pre-multiplying and post-multiplying both sides of inequality
(10) by

√
D−2

δ − I yields

D−2
δ − I >

√
I −D2

δB̃
′XB̃

√
I −D2

δ .

Therefore, if the condition (7) holds, then ARE (9) has a
solution X > 0 satisfying the above inequality. Together with
properties of determinant implies

det(D−2
δ ) =

m∏
k=1

δ−2
k > det

(
I +

√
I −D2

δB̃
′XB̃

√
I −D2

δ

)
= det

(
I + B̃(I −D2

δ)B̃
′X
)
= det(X−1A′XA)

= det(A′) det(A) = M(A)2

which verifies inequality (8), completing one direction of the
proof.

To show the other direction, we will seek a positive
diagonal matrix D, a stabilizing state feedback gain F , and
a factorization δ =

∏m
i=1 δi such that (7) holds. Without

loss of generality, [A|B] is assumed to have the Wonham
decomposition given by (4), where each subsystem [Ai|bi] is
stabilizable with state dimension ni. We now set

D = diag{1, ϵ, . . . , ϵm−1} (11)

with ϵ a small positive real number. Also define

P = diag{In1 , ϵIn2 , . . . , ϵ
m−1Inm}. (12)

Then

D−1T (z)DDδ

=F̃ (zI −A− B̃F̃ )−1B̃Dδ

=F̃P (zI − P−1AP − P−1B̃F̃P )−1P−1B̃Dδ.
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Simple calculations show that

P−1AP =


A1 o(ϵ) · · · o(ϵ)

0 A2
. . .

...
...

. . . . . . o(ϵ)
0 · · · 0 Am

 , (13)

P−1B̃ =


b1 o(ϵ) · · · o(ϵ)

0 b2
. . .

...
...

. . . . . . o(ϵ)
0 · · · 0 bm

 (14)

and o(ϵ)
ϵ approaches to a finite constant as ϵ → 0. Since

δ < M(A)−1 =

m∏
i=1

M(Ai)
−1,

it is always possible to choose δi < M(Ai)
−1 such that δ =∏m

i=1 δi. We now set F = F̃P = diag{f1, f2, . . . , fm} such
that Ai + bifi is stable for 1 ≤ i ≤ m and ∥Ti(z)∥∞ < δ−1

i ,
where Ti(z) = fi(zI − Ai − bifi)

−1bi. Such an fi exists
by the proof of Lemma 2 in the Appendix and the fact that
δ−1
i > M(Ai). It can now be verified that

D−1T (z)DDδ

= diag {T1(z)δ1, T2(z)δ2, . . . , Tm(z)δm}+ o(ϵ; z) (15)

where o(ϵ; z) → 0 as ϵ → 0 for each |z| ≥ 1. Since
∥Ti(z)δi∥∞ < 1, it follows that ∥D−1T (z)DDδ∥∞ < 1 for
sufficiently small ϵ which concludes the proof.

The proof for the sufficiency part is constructive. A closer
look at the Wonham decomposition (4) yields that Ai contains
all the eigenvalues of A which are controllable by the ith
input but not by any of the previous inputs. For a given total
capacity C > h(A), a feasible allocation of C1,C2, . . . ,Cm

so that C =
∑m

i=1 Ci is to make Ci > h(Ai). Clearly,
such an allocation always exists since h(A) =

∑m
i=1 h(Ai).

To be more precise, {Ci}mi=1 can be allocated as follows:
choose C1 so that the first input can be used to stabilize all
unstable modes controllable from the first input; choose C2 so
that the second input can be used to stabilize the additional
unstable modes controllable from the second input excluding
the ones that are already stabilized by the first input; . . .;
finally Cm is chosen to stabilize the remaining unstable modes
that are not stabilized by the other inputs. This is exactly
the sequential design idea used in the first multi-input pole
placement solution in [45]. As for the design of the controller,
with the above allocation of C1,C2, . . . ,Cm, we can separately
design a feasible fi for each subsystem [Ai|bi] such that
∥Ti(z)δi∥∞ < 1. Let F = diag{f1, f2, . . . , fm}. Then for
sufficiently small ϵ, D−1T (z)DDδ admits an almost block
diagonal form given by (15). Consequently, the inequality (7)
holds which validates the stabilizing property of such an F .

Notice that if the total capacity C > h(A) is not allocated
according to Ci > h(Ai) for each i, i.e., Ck ≤ h(Ak) holds
for some k, then the networked system can never be stabilized.
On the other hand, the re-ordering of inputs does not affect the
above scheme, but the sequential design results in a different D

and Dδ . Hence, the channel resource allocation and feedback
gain design are not unique. However, no matter how the re-
ordering is carried out, there is a minimum resource that has
to be allocated to the ith channel. This minimum resource is
given by the unstable modes only controllable by the input i,
which is the minimum stabilization work that input i has to
accomplish no matter how the design is carried out.

V. MULTI-INPUT STATE-FEEDBACK STABILIZATION –
R-SER MODEL

In this section, we study the minimum channel capacity
required for state feedback stabilization under the R-SER
channel model. The setup is shown in Fig. 8, where ∆ =
diag{∆1,∆2, . . . ,∆m}.

F - j -

∆
?

[A|B]

6 x

v u

e

Fig. 8: NCS with R-SER channel model.
Different from the SER model case, here the channels

introduce relative uncertainties instead of multiplicative uncer-
tainties to the plant inputs. Because of this difference, stabi-
lization over the R-SER channel model involves optimization
of sensitivity instead of complementary sensitivity. To be more
precise, for given uncertainty bounds δ1, δ2, . . . , δm and a
stabilizing feedback gain F , the uncertain system in Fig. 8 is
stabilized for all possible uncertainties satisfying the bounds,
if and only if

inf
D∈D

∥D−1S(z)DDδ∥∞ < 1 (16)

where Dδ = diag {δ1, δ2, . . . , δm} and D is the set of all
m × m diagonal matrices with positive diagonal entries.
As mentioned before, optimizing ∥S(z)∥∞ is preferred to
optimizing ∥T (z)∥∞ since the minimization of ∥S(z)∥∞
simultaneously minimizes ∥S(z)∥2 and ∥T (z)∥2.

Similar to the SER model case, due to the existence of
multiple uncertainties in the loop, a µ-type control problem
arises which is very difficult to solve. To overcome this
difficulty, again the twist of channel resource allocation is used
leading to a channel-controller co-design. We assume that the
total channel capacity is given by C =

∑m
i=1 Ci and can be

allocated among different input channels. This is equivalent to
allocating the error bounds δi with a given δ =

∏m
i=1 δi. The

channel-controller co-design yields the following minimization
problem: given stabilizable [A|B] and δ > 0, find

inf
detDδ=δ

{
inf

F stabilizing

[
inf
D∈D

∥D−1S(z)DDδ∥∞
]}

.

This problem, again, admits a very nice analytic solution.
Theorem 2: Assume that [A|B] is stabilizable. Then the

NCS with R-SER channel model can be stabilized by state
feedback under channel resource allocation, if and only if
C > h(A).
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Proof: The condition C > h(A) is equivalent to inf C =
h(A). We only need to show

inf
detDδ=δ

{
inf

F stabilizing

[
inf
D∈D

∥D−1S(z)DDδ∥∞
]}

=δM(A).

As in the proof of Theorem 1, we assume that A is anti-stable
for brevity. We first show that if there exist a stabilizing F
and a nonsingular diagonal D such that

∥D−1S(z)DDδ∥∞ < 1, (17)

then there holds

δ =

m∏
i=1

δi < M(A)−1. (18)

Rewrite

D−1S(z)D = I + F̃ (zI −A− B̃F̃ )−1B̃

with F̃ = D−1F and B̃ = BD. Lemma 1 can be applied to
conclude that (17) is equivalent to the existence of X > 0 to

X = A′X
[
I + B̃B̃′X

]−1

A,

I > D2
δ +DδB̃

′XB̃Dδ. (19)

We rewrite inequality (19) as D−2
δ > I + B̃′XB̃. It then

follows that

det(D−2
δ ) =

m∏
k=1

δ−2
k > det

(
I + B̃′XB̃

)
= det

(
I + B̃B̃′X

)
= det(X−1A′XA) = det(A′) det(A) = M(A)2

which verifies inequality (18), completing one direction of the
proof.

To show the other direction, we will seek a positive
diagonal matrix D, a stabilizing state feedback gain F , and
a factorization δ =

∏m
i=1 δi such that (17) holds. Without

loss of generality, [A|B] is assumed to have the Wonham
decomposition given by (4), where each subsystem [Ai|bi] is
stabilizable with state dimension ni. Now choose D as in (11)
and define P as in (12). Then

D−1S(z)DDδ

=I+F̃ (zI−A−B̃F̃ )−1B̃Dδ

=I+F̃P (zI−P−1AP−P−1B̃F̃P )−1P−1B̃Dδ,

where P−1AP and P−1B̃ are given by (13) and (14) respec-
tively. Since

δ < M(A)−1 =
m∏
i=1

M(Ai)
−1,

it is always possible to choose δi < M(Ai)
−1 such that δ =∏m

i=1 δi. We now set F = F̃P = diag{f1, f2, . . . , fm} such
that Ai+bifi is stable for all 1 ≤ i ≤ m and ∥Si(z)∥∞ < δ−1

i ,
where Si(z) = 1 + fi(zI −Ai − bifi)

−1bi. Such an fi exists
by Lemma 2 and the fact that δ−1

i > M(Ai). It can now be
verified that

D−1S(z)DDδ

= diag {S1(z)δ1, S2(z)δ2, . . . , Sm(z)δm}+ o(ϵ; z),

where o(ϵ; z) → 0 as ϵ → 0 for each |z| ≥ 1. Since
∥Si(z)δi∥∞ < 1, it follows that ∥D−1S(z)DDδ∥∞ < 1 for
sufficiently small ϵ which concludes the proof.

We want to mention that the remarks following Theorem 1
on how the channel resource allocation is done also apply here.

VI. MULTI-INPUT STATE-FEEDBACK STABILIZATION –
SNR MODEL

F - Γ - j - Γ−1 - [A|B]
?

6

v
d

x

u

Fig. 9: NCS with SNR channel model.

The same idea extends to the networked state feedback
stabilization over the SNR channel model. As shown in Fig. 9,
we are interested in stabilizing [A|B] by a constant state
feedback controller F over m parallel AWGN input channels.
The noise d is a vector white Gaussian noise with covariance
Σ2 = diag{σ2

1 , σ
2
2 , . . . , σ

2
m}. Note that we introduce a diag-

onal scaling matrix Γ = diag{γ1, γ2, . . . , γm} with positive
diagonal entries. Apparently, increasing γi will increase the
transmission power in the ith channel. Therefore, the matrix
Γ enables the possibility to adjust the transmission power in
the different input channels. Since the SNR is proportional to
the transmission power and the channel capacity is determined
by the SNR, the total channel capacity can be allocated
indirectly in this case by choosing an appropriate Γ, which
will be elaborated later. Such a scaling matrix has also been
introduced in the literature. See for instance [15], [29], [12].

Here, the complimentary sensitivity function that is the
closed-loop transfer function from the noise d to the signal v
becomes T (z) = ΓF (zI−A−BF )−1BΓ−1. Then the power
spectrum density of vi is given by {T (ejω)Σ2T (ejω)∗}ii, and
the mean power of vi is

1

2π

∫ 2π

0

{T (ejω)Σ2T (ejω)∗}iidω,

where {·}ii stands for the ith diagonal element of the matrix.
In view of (1), the SNR of channel i is expressed as

SNRi =
1

2π

∫ 2π

0

{T (ejω)Σ2T (ejω)∗}iidω/σ2
i

=
1

2π

∫ 2π

0

{Σ−1T (ejω)Σ2T (ejω)∗Σ−1}iidω.

Consequently, the capacity of channel i is given by

Ci =
1

2
log

{
I +

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

,

yielding the total channel capacity

C = C1 + · · ·+ Cm

=
1

2
log

m∏
i=1

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

.
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As before, we are interested in finding the minimum total
capacity C such that the NCS over AWGN channels can be
stabilized by a constant state feedback controller, i.e., to find

inf
F stabilizing

C (20)

with given [A|B] and γ1, . . . , γm > 0. This is a difficult
problem. However, by applying the channel resource allocation
again, we are able to mitigate this difficulty and derive the
same nice analytic solution as in [7] obtained for the single-
input case. For this purpose, we assume that the total channel
capacity C is given and can be allocated among different
input channels. As we mentioned before, the channel capacity
allocation is done indirectly here by choosing an appropriate
Γ, which gives rise to the following minimization problem

inf
γ1,...,γm>0

inf
F stabilizing

C

that is the infimum of the total channel capacity required for
networked stabilization with channel resource allocation. At
first sight, this problem looks even harder than problem (20).
However, surprisingly, it can be analytically solved.

Theorem 3: Assume that [A|B] is stabilizable. Then the
NCS with SNR channel model can be stabilized by state
feedback under channel resource allocation, if and only if
C > h(A).

Proof: We only need to show

inf
γ1,...,γm>0

inf
F stabilizing

C = h(A).

In light of Remark 2 in the Appendix, we can simply assume
that A is anti-stable. We first prove that for a given stabilizing
state feedback gain F and a scaling matrix Γ, the total channel
capacity C ≥ h(A). Denote B̃ = BΓ−1Σ and F̃ = Σ−1ΓF ,
then [A|B̃] is stabilizable and F̃ is a stabilizing state feedback
gain for this system. Let T̃ (z) = F̃ (zI − A − B̃F̃ )−1B̃. By
Lemma 3, we have

1

2
log det

(
I+

1

2π

∫ 2π

0

T̃ (ejω)T̃ (ejω)∗dω

)
=

1

2
log det

(
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

)
≥h(A).

Therefore,

C =
1

2
log

m∏
i=1

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

≥ 1

2
log det

(
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

)
≥h(A),

where the first inequality follows from Hadamard’s inequality
[26]: for any m×m positive definite matrix Q = [qij ], it holds
det(Q) ≤ Πm

i=1qii and the equality holds if and only if Q is
diagonal.

Without loss of generality, [A|B] is assumed to have the
Wonham decomposition given by (4), where each subsystem
[Ai|bi] is stabilizable with state dimension ni. Now we show
that for any ϵ > 0, if the total capacity constraint is given by

h(A) + ϵ, then one can find an allocation of this constraint
among the input channels in the form

{h(A1) +
ϵ

m
, . . . , h(Am) +

ϵ

m
} (21)

and simultaneously design a feedback gain F such that the
closed-loop system is stable and each channel capacity satisfies
the constraint Ci < h(Ai) +

ϵ
m . The allocation of channel

capacities is done indirectly by choosing an appropriate scaling
matrix Γ. Specifically, let

Γ−1Σ = diag{1, η, . . . , ηm−1}

with η a small positive real number. Define

P = diag{In1 , ηIn2 , . . . , η
m−1Inm}.

Then

T̃ (z) = F̃ (zI −A− B̃F̃ )−1B̃

= F̃P (zI − P−1AP − P−1B̃F̃P )−1P−1B̃,

where

P−1AP =


A1 o(η) · · · o(η)

0 A2
. . .

...
...

. . . . . . o(η)
0 · · · 0 Am

 ,

P−1B̃ =


b1 o(η) · · · o(η)

0 b2
. . .

...
...

. . . . . . o(η)
0 · · · 0 bm


and o(η)

η approaches to a finite constant as η → 0.
For any given total capacity constraint h(A) + ϵ, we

can always find an allocation of the total constraint in the
form (21). By Corollary 1, for each [Ai|bi], we can design
a stabilizing state feedback gain fi such that ∥Ti(z)∥22 =
M(Ai)

2 − 1, where Ti(z) = fi(zI − Ai − bi)
−1bi. Now let

F = F̃P = diag{f1, f2, . . . , fm}, then

Ci =
1

2
log

{
I+

1

2π

∫ 2π

0

Σ−1T (ejω)Σ2T (ejω)∗Σ−1dω

}
ii

=
1

2
log

{
I +

1

2π

∫ 2π

0

T̃ (ejω)T̃ (ejω)∗dω

}
ii

=
1

2
log
(
1 + ∥Ti(z)∥22

)
+ o(η)

=
1

2
logM(Ai)

2 + o(η)

=h(Ai) + o(η).

By choosing a sufficiently small η > 0, the actual channel
capacities can be made to satisfy the constraints Ci < h(Ai)+
ϵ
m for i = 1, . . . ,m. Apparently, the total capacity satisfies
C < h(A) + ϵ.

In light of Remark 1, the above design of F in the
proof is the same as that in the R-SER model case. We
want to emphasize that the channel capacity allocation is
done indirectly here by choosing the scaling matrix Γ, i.e.,
by adjusting the transmission power in the different input
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channels. The difference from the setup in [29], [42] lies in that
the total channel capacity, rather than the total transmission
power, is assumed to be constrained. Once again, we witness
the benefits brought in by the channel-controller co-design.
With the additional design freedom gained by the channel
resource allocation, the problem of networked stabilization
becomes well formulated and admits a nice analytic solution.

VII. AN ILLUSTRATIVE EXAMPLE

In this section, we provide a numerical example to illustrate
how an NCS is stabilized by channel-controller co-design
under each of the three channel models. We apply the SER
model and R-SER model to the logarithmic quantizer and
alternative logarithmic quantizer respectively. Because the
associated uncertainties are static, the inequality (5) and (16)
are necessary for quadratic stability, but may not be necessary
for stability of the closed-loop system. Nevertheless, the
example illustrates the use of channel-controller co-design,
that is the main purpose of this section. For the sake of
numerical computation, we take the logarithm with base 2 in
the example.

Consider an unstable system [A|B] with

A =

4 0 0
0 2 0
0 0 2

 , B =
[
B1 B2

]
=

1 0
1 1
0 1

 .

Clearly, [A|B] is stabilizable. However, [A|α1B1 + α2B2]
is not stabilizable for any α1, α2 ∈ R, since the matrix[
λI −A α1B1+α2B2

]
loses row rank when λ = 2. This

fact implies that it is impossible to convert [A|B] to a
stabilizable single-input system by a linear combination of
the two inputs. Note that [A|B] is already in the Wonham
decomposition form with

A = diag{A1, A2}, b1 =
[
1 1

]′
, b2 = 1,

where A1 = diag{4, 2} and A2 = 2. The topological entropy
of the plant is

h(A) = h(A1) + h(A2) = log2(4× 2) + log2 2 = 3 + 1 = 4.

A. SER model
Let the total capacity be given by C = 4+2×10−2 > h(A).

We allocate the capacity among the two input channels as
C1 = 3 + 10−2 > h(A1),C2 = 1 + 10−2 > h(A2). Then the
two logarithmic quantizers are characterized by δ1 = 2−C1 =
0.124 and δ2 = 2−C2 = 0.497.

To design the state feedback gain, we solve the H∞ optimal
T (z) for the following two single-input systems:

[A1|b1] =
[
4 0 1
0 2 1

]
and [A2|b2] = [2|1], (22)

yielding the optimal feedback gains f1 =
[
−6.667 1.333

]
and f2 = −2, respectively. Let

F = diag{f1, f2} =

[
−6.667 1.333 0

0 0 −2

]
.

With this co-design of input channels and state feedback gain
F , the closed-loop evolution of the plant states starting from
an initial condition stimulated by an impulse is shown in Fig.
10. The state converges to zero asymptotically.
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Fig. 10: State evolution with logarithmic quantizer.

B. R-SER model

Let the total capacity be given by C = 4 + 2 × 10−2.
We allocate the capacity among the two input channels as
C1 = 3 + 10−2,C2 = 1 + 10−2 that is the same allocation as
in the SER model case. Then the two alternative logarithmic
quantizers are again characterized by δ1 = 2−C1 = 0.124 and
δ2 = 2−C2 = 0.497, although they have different physical
meanings from those in the SER model case.

The design of state feedback gain is different from the SER
model case. We solve the H∞ optimal S(z) instead of H∞
optimal T (z) for the two single-input systems in (22) and
obtain the optimal feedback gains f1 =

[
−6.563 1.313

]
and

f2 = −1.5, respectively. Let

F = diag{f1, f2} =

[
−6.563 1.313 0

0 0 −1.5

]
.

With this co-design of input channels and state feedback gain
F , the closed-loop evolution of the plant states starting from
an initial condition stimulated by an impulse is shown in Fig.
11. The state converges to zero asymptotically.
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Fig. 11: State evolution with alternative logarithmic
quantizer.
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C. SNR model
As mentioned before, the channel resource allocation in

this case is done by choosing the scaling matrix Γ, which
is different from the previous two models. Specifically, let

Γ−1Σ =

[
1 0
0 η

]
.

To design the state feedback gain, we solve the H2 optimal
T (z) for the two single-input systems in (22) and obtain the
optimal gains f1 =

[
−6.563 1.313

]
and f2 = −1.5, which

are identical to those in the R-SER model case. Let

F = diag{f1, f2} =

[
−6.563 1.313 0

0 0 −1.5

]
.

Under this feedback controller, the numerical results on the
channel capacities are summarized in Table I. Since η is a
design parameter, its values are also listed.

TABLE I: Simulation results with SNR model.
η C1 C2 C

10−1 3 + 1.6× 10−2 1 4 + 1.6× 10−2

10−2 3 + 1.7× 10−4 1 4 + 1.7× 10−4

10−3 3 + 1.7× 10−6 1 4 + 1.7× 10−6

We can see that as η → 0, the total capacity C→h(A).
In other words, for any ϵ > 0, when the total channel
capacity constraint is given by h(A) + ϵ, we can always
simultaneously design the state feedback gain F and find
an allocation of the capacities among the input channels to
stabilize the closed-loop system. To demonstrate more clearly
how the channel resource allocation is done, let the total
capacity constraint be specifically given by 4+4×10−4. Then
we allocate this constraint among the two input channels as
{3+2×10−4, 1+2×10−4}. Now we choose η=10−2 and use
the state feedback gain F designed above. Under this channel-
controller co-design, the channel capacities C1=3+1.7×10−4<
3+2×10−4,C2=1<1+2×10−4 as shown in Table I. The total
capacity satisfies the constraint C=4+1.7×10−4<4+4×10−4.
One realization of the stochastic closed-loop evolution of the
plant states is shown in Fig. 12. Note that the closed-loop
system states converge to a stationary stochastic process, not
to zero, due to the stationary noises in the input channels.
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Fig. 12: State evolution with SNR channel model.

VIII. CONCLUSION

In this paper, we study the stabilization of networked
multi-input systems with imperfect input channels, i.e., the
controller-actuator channels. Each input channel is modeled in
three different ways, i.e., the SER model, the R-SER model
and the SNR model. One of the novelties of this paper is
in the introduction of the R-SER model that is motivated
from the alternative logarithmic quantizer in Fig. 5. The
advantage of this alternative quantizer over the commonly
used one in the literature is that it leads to the minimization
of ∥S(z)∥∞ instead of ∥T (z)∥∞ as for the commonly used
quantizer. The minimization of ∥S(z)∥∞ shares a common
optimal state feedback gain with the minimization of ∥S(z)∥2
and ∥T (z)∥2. Hence this optimization problem is intrinsically
multi-objective. In contrast, the minimization of ∥T (z)∥∞
conflicts that of ∥S(z)∥∞, ∥T (z)∥2, ∥S(z)∥2 in the sense
that its optimal solution may worsen the others which may
potentially cause unexpected problems.

The main contribution of this paper is in the introduction of
the channel resource allocation to find the least total channel
capacity required for multi-input networked stabilization under
each channel model. We assume that the total channel capacity
is determined by the available resource which can be allocated
among different input channels. With this additional design
freedom, the controller designer should also participate in the
channel design rather than passively take the channels given
by the system designer. The overall process of channel re-
source allocation and the controller design constitutes channel-
controller co-design. The main results in this paper can be
summarized into a universal theorem: The state feedback
stabilization can be accomplished by the channel-controller
co-design, if and only if the total input channel capacity is
greater than the topological entropy of the open-loop system.
It has been justified in [37] that the topological entropy can
serve as a measure of instability in a linear system. Finally,
let us mention that the idea of channel resource allocation
was first proposed in the conference paper [23]. Several other
works [46], [8] have been carried out following this idea.

Only controller-actuator channels and state feedback control
are considered in this paper. These serve as the starting
point and are also of fundamental importance. The out-
put feedback networked control which involves both sensor-
controller channels and controller-actuator channels is much
more challenging, and is currently under our study.
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APPENDIX: PROOFS OF LEMMAS 2 AND 3
A. Proof of Lemma 2

We first consider the case when A has no eigenvalues on
the unit circle. Let λ be an unstable eigenvalue of A, then
∥S(∞)∥∞ = 1 and ∥T (λ)∥∞ = 1. This shows that

inf
F stabilizing

∥S(z)∥∞≥1 and inf
F stabilizing

∥T (z)∥∞≥1.

Taking θ = 1 and W = γ−1I with γ > 1 in Lemma 1, we
see that

inf
F stabilizing

∥S(z)∥∞ < γ

if and only if there exists a stabilizing solution X ≥ 0 to the
ARE

A′X(I +BB′X)−1A = X (23)
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such that I+B′XB<γ2I . Taking θ=0 and W =γ−1I with
γ>1 in Lemma 1, we see that

inf
F stabilizing

∥T (z)∥∞ < γ

if and only if there exists a stabilizing solution X̃ ≥ 0 to the
ARE

A′X̃
[
I +B(1− γ−2)B′X̃

]−1

A = X̃ (24)

such that B′X̃B < γ2I . Notice that the stabilizing solution to
an ARE, if exists, is unique. Comparing (23) with (24), it is
easy to see that X = (1− γ−2)X̃ . Then X ≥ 0 if and only if
X̃ ≥ 0. Also I +B′XB < γ2I if and only if B′X̃B < γ2I .
Therefore, the above two necessary and sufficient conditions
for the cases when θ = 1 and θ = 0 are actually the same.
In other words, the existence of the desired X and X̃ are
equivalent, implying that

inf
F stabilizing

∥S(z)∥∞ = inf
F stabilizing

∥T (z)∥∞.

Consequently, it suffices to study the optimal sensitivity in the
rest of the proof. In view of the requirement I+B′XB < γ2I ,
we have

inf
F stabilizing

∥S(z)∥∞ = inf
F stabilizing

{γ : ∥S(z)γ−1∥∞ < 1}

=
√
ρ(I+B′XB).

Without loss of generality, we can assume that

[A|B] =

[
As 0 Bs

0 Au Bu

]
, (25)

where As is stable and Au is anti-stable. By the existence and
uniqueness of the stabilizing solution to ARE (23), we have

X =

[
0 0
0 Xu

]
with Xu being the unique stabilizing solution to the ARE

Xu = A′
uXu(I+BuB

′
uXu)

−1Au (26)

= A′
uXuAu −A′

uXuBu(I+B′
uXuBu)

−1B′
uXuAu

satisfying I+B′
uXuBu < γ2I . Moreover, Xu > 0 and has a

closed form expression

Xu =

( ∞∑
k=1

A−k
u BuB

′
uA

′−k
u

)−1

.

When m = 1, we have

inf
F stabilizing

∥S(z)∥∞ =
√
1+B′XB =

√
det(I+BB′X)

=
√
det(I+BuB′

uXu)

=
√
det(Au) det(A′

u) = M(A).

When m > 1, the eigenvalues of I + B′XB are all real and
no less than one. Thus

inf
F stabilizing

∥S(z)∥∞=
√
ρ(I+B′XB)≤

√
det(I+B′XB)

=
√
det(I+BB′X) = M(A).

To prove the lower bound, let Φ(z) = γ−1S(z−1), then Φ(z)
is analytic inside the unit circle and ∥Φ(z)∥∞ < 1. Let λ1 be
an eigenvalue of A with magnitude ρ(A). Then

detS(λ1) = det(I + F (λ1I −A−BF )−1B)

= det
(
I + (λ1I −A−BF )−1BF

)
= det

(
(λ1I −A−BF )−1(λ1I −A)

)
= 0.

Therefore, the matrix Φ(λ−1
1 ) = γ−1S(λ1) has eigenvalue at

0. In other words, there exists x ∈ Cm with x∗x = 1 such
that

Φ(λ−1
1 )x = 0. (27)

Moreover, since S(∞) = I , it follows that

Φ(0)I = γ−1I. (28)

By the theory of tangential Nevanlinna-Pick interpolation [4],
such a matrix function Φ(z) satisfying (27) and (28) exists if
and only if the extended Pick matrix x∗x− 0
1− λ−1

1 λ∗−1
1

x∗ − 0
1− 0

x− 0
1− 0

I − γ−2I
1− 0

=[ 1
1− ρ(A)−2 x∗

x (1− γ−2)I

]
>0.

Since (1− γ−2)I > 0, the above inequality holds if and only
if

1

1− ρ(A)−2 − 1

1− γ−2 > 0.

This implies that γ > ρ(A) and completes the proof for the
lower bound.

Finally, we address the case when A has eigenvalues on the
unit circle. In this case, neither (23) nor (24) has a stabilizing
solution. Nevertheless, we can let Aϵ = (1 + ϵ)A with ϵ >
0 such that Aϵ has the same number of eigenvalues inside
the unit circle as A but no eigenvalues on the unit circle. By
applying the procedure above to system [Aϵ|B] and taking the
limit ϵ → 0, we can obtain the same result as in the case when
A does not have eigenvalues on the unit circle.

B. Proof of Lemma 3

We first consider the following set

Ω=

{
1

2π

∫ 2π

0

(ejωI−A−BF )∗
−1

F ∗F (ejωI−A−BF )−1dω :

A+BF is stable
}
,

which is a subset of the partially ordered set of n×n positive
semi-definite matrices. The infimum of Ω, denoted as inf Ω,
is the greatest lower bound of Ω. The least element of Ω, if
exists, is an element of Ω which is less than or equal to any
other element of Ω. Apparently, Ω contains a least element if
and only if inf Ω ∈ Ω. Denote the closure of Ω by Ω.
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We will show that when [A|B] is stabilizable, inf Ω ∈ Ω.
Firstly, consider the case when A has no eigenvalues on the
unit circle. By Parseval’s identity [36], we have

1

2π

∫ 2π

0

(ejωI −A−BF )∗
−1

F ∗F (ejωI −A−BF )−1dω

=

∞∑
k=0

(A+BF )∗kF ∗F (A+BF )k.

The right-hand side of the above equation is precisely the
solution to

P = (A+BF )′P (A+BF ) + F ′F

that is a discrete-time Lyapunov equation. This fact implies
that

Ω = {P : P = (A+BF )′P (A+BF ) + F ′F,

A+BF is stable}.

It is well known from the H2 optimal control theory [28] that
inf Ω = X , where X is the unique stabilizing solution to ARE
(23), and the corresponding optimal gain F is given by

F = −B′X(I +BB′X)−1A. (29)

Moreover, we have inf Ω = X ∈ Ω, which implies that X is
in fact the least element of Ω .

If A has eigenvalues on the unit circle, the desired feedback
gain (29) cannot be achieved. Therefore, the least element of Ω
does not exist in this case. As in the proof of Lemma 2, we let
Aϵ = (1+ ϵ)A with ϵ > 0 such that Aϵ has the same number
of eigenvalues inside the unit circle as A but no eigenvalues on
the unit circle. We also define the subset Ωϵ correspondingly.
Applying the above derivation to system [Aϵ|B] yields that
Ωϵ has a least element given by the stabilizing solution Xϵ to
ARE

A′
ϵXϵ(I +BB′Xϵ)

−1Aϵ = Xϵ.

Taking the limit ϵ → 0, we get limϵ→0 Xϵ = X , where X is
the unique semi-stabilizing solution to (23) in the sense that
all the eigenvalues of A− BB′X(I + BB′X)−1A lie in the
closed unit disk. This implies that inf Ω ∈ Ω holds.

Now we prove the hold of equality (2) and inequality (3).
Without loss of generality, we only need to consider the case
when A is anti-stable. For the equality (2), using inf Ω = X ,
where X > 0 is the stabilizing solution to (23), together with
the fact that the log determinant function is operator monotone
increasing on the cone of positive definite matrices yields

inf
F stabilizing

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω

)
=

1

2
log det(I +B′XB).

Since

det(I +B′XB) =det(I +BB′X) = det(X−1A′XA)

=det(A′) det(A) = M(A)2,

it follows that

inf
F stabilizing

1

2
log det

(
I+

1

2π

∫ 2π

0

T (ejω)∗T (ejω)dω

)
=

1

2
logM(A)2 = h(A)

which concludes the proof of the equality (2).
We proceed to prove the inequality (3). For an arbitrary F

such that A + BF is stable, the matrix A′ + F ′B′ is also
stable. This implies that the system [A′|F ′] is stabilizable.
Moreover, B′ is a stabilizing state feedback gain. In this case,
the complementary sensitivity function of system [A′|F ′] is
T ′(z) = B′(zI −A′ − F ′B′)−1F ′. In view of (2), we have

1

2
log det

(
I +

1

2π

∫ 2π

0

T ′(ejω)∗T ′(ejω)dω

)
=

1

2
log det

(
I +

1

2π

∫ 2π

0

T (e−jω)T (e−jω)∗dω

)
=

1

2
log det

(
I +

1

2π

∫ 2π

0

T (ejω)T (ejω)∗dω

)
≥ h(A).

Since the choice of stabilizing F is arbitrary, the inequality
(3) follows.

Remark 2: The proofs of Lemma 2 and Lemma 3 show that
the eigenvalues of A on the unit circle have no effect on the
infimum of H∞ or H2 norm of S(z) and T (z). In addition,
the system [A|B] can be assumed to have decomposition (25).
By decomposing F into

[
Fs Fu

]
with compatible dimensions,

Fs = 0 can be used in minimizing both the H∞ norm and H2

norm of S(z) and T (z). As a result, the stable eigenvalues of
A also have no effect on the optimization value. Therefore,
we can simply assume that A is anti-stable without loss of
generality when we encounter optimization of S(z) and T (z).
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