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Stabilization of Two-port Networked Systems with Simultaneous
Uncertainties in Plant, Controller, and Communication Channels

Di Zhao, Li Qiu, and Guoxiang Gu

Abstract—In this paper, we study robust stabilization for
the networked control system (NCS) over the communication
channels described by cascaded two-port networks. Such an
NCS involves simultaneous uncertainties in the plant, controller,
and two-port communication channels. The cascaded two-port
connections arise when signals in the NCS are transmitted
through bidirectional communication channels separated by a
sequence of relays. Distortions and interferences occurring in
communications are taken into account. We consider H∞-norm
bounded uncertainties in the transmission matrices of the two-
port channels, and the gap-type uncertainties in the plant and
controller models. A necessary and sufficient condition for the
robust stability of the NCS is presented in the form of an
“arcsine” inequality, which states that the NCS is stable whenever
the uncertainties quantified by the aforementioned metrics are
well bounded and satisfy the “arcsine” inequality. A stability
margin related to the Gang of Four transfer matrix is obtained,
based on which, the controller synthesis problem can be solved
through a special H∞ optimization with favourable properties.
Furthermore, a generalized stability condition is studied in terms
of frequency-wise bounded uncertainties, and the corresponding
controller synthesis problem is proposed and solved.

I. INTRODUCTION

UNCERTAINTIES permeate every physical system to be
controlled due to the inadequacies of the mathemati-

cal models. Indeed it is difficult to model many physical
phenomena mathematically; Even if a physical system can
be modeled accurately, the mathematical model can be too
complex to be used in analysis and synthesis for control system
design. To combat against uncertainties, the control robustness
naturally comes into the picture. The robust stabilization
problem has been studied over decades and shown to be critical
in many applications [1]–[4]. It becomes more important and
challenging for networked control systems (NCSs), because of
the distortions and interferences induced by communication
channels. We study uncertain NCSs in this paper, focusing
on those with inaccurate or partially known models and
those involving distortions and interferences in communication
channels.

In order to characterize uncertain systems, it is crucial to
define an appropriate metric or distance between a pair of
systems with one for the true physical system, and the other
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Fig. 1: A standard closed-loop system.
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Fig. 2: Cascaded two-port networked feedback system with
simultaneous uncertainties.

for the plant model. A geometric method with the input-
output point of view to model the uncertain dynamics has been
developed through the gap metric and its variations, among
which the gap [5]–[8], the pointwise gap [9], [10] and the
ν-gap [11], [12] have been intensively studied. It is noticed
in [11] that among these metrics, the ν-gap characterizes the
largest set of uncertain systems tolerable by a nominal closed-
loop system. In this study, we adopt the gap metric for its
simplicity. Since the variations of the gap metric share many
common properties, most of the results in this paper hold true
for the ν-gap and the pointwise gap with similar arguments.

Under the aforementioned metrics, the corresponding robust
stabilization problems can be formulated. First, given a nomi-
nal plant and a controller, the “largest” amount of uncertainties
can be characterized and analyzed for which the feedback
system maintains the stability. In addition, given the nominal
plant only, an optimal robust controller can be designed, which
maximizes the robust stability margin. Most of the robust
stabilization problem in terms of the standard feedback system
as in Fig. 1 has been well studied and neatly solved in the last
three decades [7], [8], [10]–[14]. Concerning the simultaneous
uncertainties both in the plant and controller, [8], [10] and [12]
establish tight stability conditions by introducing the angular
gap metric, which is the “arcsine” of the gap, the pointwise
gap and the ν-gap, respectively.

Perfect communication is assumed in the literature of con-
ventional control, including robust control. In the network
era, signals are transmitted through imperfect communica-
tion channels for most practical systems. As such, we have
NCSs, differing from conventional control systems, as the
information exchanged between the plant and controller is
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through communication networks [15]. As the quality of
control heavily relies on the conditions of communication
channels, the channel uncertainties will have to be taken into
account in modeling and analyzing the feedback system. The
communication channels in an NCS can be modeled in various
ways so as to reveal actual situations. In this paper, we present
a two-port NCS model by extending the standard closed-
loop system (Fig. 1) to the feedback system with cascaded
two-port connections (Fig. 2). Based on the architecture of
the two-port NCS, we measure the dynamic uncertainties in
the plant and controller with the gap metric, and measure
those in the transmission matrices of the two-port networks
with H∞-norm bounds. Our problem formulation for robust
stabilization is mainly motivated by the application scenario in
stabilizing a class of feedback systems under communication
constraints. Within the feedback loop, the plant and controller
cannot communicate directly, and the signals can only pass
through the communication network consisting of a sequence
of relays. The direct motivating examples are satellite networks
[16], wireless sensor networks [17] and other large-scale
networks with multiple routings. Moreover, each communi-
cation channel between a pair of neighboring relays can be
regarded as a subsystem that involves not only multiplicative
distortions on the transmitted signal itself, but also additive
interferences induced by the signal in the reverse direction.
This phenomenon is usually encountered in a bidirectional
wireless network subject to channel fading or under malicious
attacks [18].

The two-port networks are not new, and have been studied
over decades for different purposes. They are first introduced
in the electrical circuit theory [19], [20]. Later, they are bor-
rowed to characterize linear time-invariant (LTI) systems with
a chain-scattering representation in [21]. In the application
of teleoperation in robotics, the two-port networks are used
to model communication blocks between the human operator
and the environment [22]. The two-port representations have
also been used for studying feedback robustness from the
perspective of the ν-gap metric [23]. Recently, the two-
port networks have been employed in [24]–[26] to model
communication channels, and study feedback stabilization for
a class of NCSs.

In this paper, we continue the investigation on robust net-
worked control. Partial results of this study have been reported
in conference papers [25], [26]. Our main contribution is a
clean result on analyzing the stability of the feedback system
with uncertainties from multiple sources, including model
uncertainties and cascaded two-port uncertainties. As it is
known, a general approach to deal with the robust stability
problem with multiple sources of uncertainties is through µ
analysis [4], [27]. In general, the µ analysis is computationally
difficult and even NP hard in the case of multiple (more than
two) block-diagonal uncertainties. However, for this specific
two-port problem, we can mitigate these difficulties by ex-
ploring the special structures of the two-port networks and
taking advantage of the geometric insights into the angles
and rotations of the subspaces. By generalizing the “arcsine”
theorem [8] for a standard feedback system, we are able
to obtain a concise necessary and sufficient robust stability

condition for the two-port NCS. Furthermore, as the stability
margin coincides with that of the standard closed-loop system,
the optimal robust controller synthesis problem can be solved
by the same one-block H∞ optimization [4], [12].

It is worth noting there exist previous works on robust
stabilization of NCSs with special communication architec-
tures and various uncertainty descriptions. For example, [22]
considers teleoperation of robots through two-port communi-
cation networks with time delays, [28] considers a plant with
parametric uncertainties over networks subject to data packet
loss, [29] considers a plant with polytopic uncertainties in its
coefficients over a communication channel subject to fading,
and etc. Our work differs from the previous ones mainly in that
we model not only the dynamic uncertainties in the plant and
controller, but also the distortions and interferences induced
by bidirectional communication channels.

The rest of the paper is organized as follows. In Section II,
we introduce the notation system and preliminaries of the
robust control problem related to the standard closed-loop
system. In Section III, the physical meaning of a two-port net-
work is discussed, and a two-port NCS is modeled. In Section
IV, we present a necessary and sufficient stability condition
for the two-port NCS, and prove its sufficiency. In Section
V, we introduce the techniques in the analysis of subspaces
and prove the necessity of the robust stability condition. In
Section VI, we extend the main stability condition to the
case where the uncertainties are frequency-wise bounded, and
study the corresponding synthesis problem. In Section VII,
we give an analytic example to illustrate the tightness of the
stability condition, a simulated example involving nonlinearity
and time delay, and a controller synthesis example involving
frequency-wise bounded uncertainties. Last, we summarize our
contribution and discuss future work in Section VIII.

II. PRELIMINARY RESULTS

A. Notation

Let F = R or C be the real or complex field, respectively,
and Fn be the linear space of n-dimensional vectors over
the field F. For x ∈ Fn, its Euclidean norm is denoted by
‖x‖. For matrix A ∈ Fm×n, its transpose is denoted by
AT , its conjugate (Hermitian) transpose is by A∗, and its
ith singular value is by σi(A), i = 1, 2, . . . ,min{m,n}, in
a nonincreasing order. The largest singular value is specially
denoted by σ̄(A) := σ1(A). The operator norm (spectral
norm) of A is denoted by ‖A‖ := σ̄(A), and the column
range of A is by R(A). Given matrices

M =

[
M11 M12

M21 M22

]
∈ F(m+p)×(m+p) and A ∈ Fp×m,

we define the linear fractional transformation (LFT) as

LFT(M,A) := (M22A+M21)(M11 +M12A)−1,

assuming the existence of the above inverse.
The system under consideration is continuous-time and LTI,

represented by its transfer matrix. The Laplace variable s
may be omitted for simplicity. Denote L2/L∞ and H2/H∞
as the standard Lebesgue and Hardy 2-spaces/∞-spaces,
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respectively, and RL∞/RH∞ as the set consisting of all
real rational members of L∞/H∞. Let P be the field of real
rational transfer functions. For transfer matrix P ∈ Pp×m, its
para-Hermitian is denoted by P∼(s) = PT (−s). We say P is
stable, if its H∞-norm

‖P‖∞ := sup
Re(s)>0

σ̄[P (s)]

is bounded, in which case, P ∈ RHp×m∞ . The superscript may
be omitted for simplicity if it can be inferred from the context.
A vector signal v(t) ∈ Fn is said to be causal, if v(t) = 0
∀t < 0, and to have bounded energy, if its 2-norm

‖v‖2 :=

√∫ ∞
0

‖v(t)‖2dt

is bounded. The set of Laplace transforms of all causal and
energy bounded signals v(t) ∈ Fn is precisely Hn2 . The
superscript can again be omitted, if the context is clear.

For a possibly unstable system P ∈ Pp×m, denote its input
as u and its output as y, then its graph is defined by the
following set

GP :=

{[
u
y

]
: u ∈ Hm2 , y = Pu ∈ Hp2

}
.

Two transfer matrices M and N in RH∞ are (right)
coprime if there exist transfer matrices X and Y in RH∞
such that

XM + Y N = I.

It is known [14] that every P ∈ Pp×m admits a right coprime
factorization (RCF):

P = NM−1,

where M,N ∈ RH∞ are right coprime. It has been shown
[4] that if P = NM−1 is a RCF, then

GP =

[
M
N

]
H2, (1)

where
[
M
N

]
is called the graph symbol of P .

B. Robust Stability in Gap Metric

After George Zames introduced the gap metric into the
control field [5], there has been a major development in the
last few decades as evidenced by [7]–[11]. Next we briefly
introduce some key concepts and an application of the gap
metric on the robust stability of a standard closed-loop system.
Let X and Y be two subspaces of a Hilbert space H and
let ΠX and ΠY be the orthogonal projections on X and Y ,
respectively. The gap metric between the two subspaces is
defined as

γ(X ,Y) := ‖ΠX −ΠY‖, (2)

where ‖ · ‖ stands for the induced operator norm.
The gap between LTI systems P1 and P2 ∈ P is defined to

be the gap between their system graphs, i.e.,

δ(P1, P2) := γ(GP1 ,GP2).

Given system P ∈ P , denote the gap ball with center P
and radius r ∈ [0, 1) as

B(P, r) :=
{
P̃ ∈ P : δ(P, P̃ ) ≤ r

}
.

The standard closed-loop system in Fig. 1 is denoted as
[P,C], where P ∈ Pp×m represents the plant and C ∈ Pm×p
the controller.

The standard closed-loop system [P,C] is well-posed when
I−CP has full normal rank, i.e., it only loses ranks for some
but not all s ∈ C. Under this mild condition, the well-known
Gang of Four transfer matrix [30] can be represented as

GoF(P,C) :=

[
I
P

]
(I − CP )−1

[
I −C

]
,

which will be sometimes abbreviated as GoF for simplicity.
The closed-loop system [P,C] is said to be stable, or C is
said to stabilize P , if GoF(P,C) is stable, i.e., GoF(P,C) ∈
RH(m+p)×(m+p)

∞ .
In robust stability analysis, a fundamental problem is to

characterize the largest amount of uncertainty in both the plant
and controller for which the closed-loop system maintains
its stability. One important robust stability result, with the
stability condition given in terms of an “arcsine” inequality,
was obtained in [8]. We quote it in the following lemma.

Lemma 1. Assume that the nominal system [P,C] is stable.
For rp, rc ∈ [0, 1), the perturbed system [P̃ , C̃] is stable for
all P̃ ∈ B(P, rp) and C̃ ∈ B(C, rc) if and only if

arcsin rp + arcsin rc < arcsin ‖GoF(P,C)‖−1∞ . (3)

Lemma 1 precisely quantifies the largest simultaneous un-
certainties in the plant and the controller which the feedback
system in Fig. 1 can tolerate while the stability is maintained.
The introduction of “arcsine” function in the stability con-
dition (3) is closely related to the fact that arcsin δ(P1, P2)
is a metric for P1, P2 ∈ P , called the angular metric [8]. It
turns out that the angular metric is a length [8], [31]. Hence
its triangle inequality is tight, which is the essential reason
why condition (3) is both necessary and sufficient. Naturally,
the value ‖GoF(P,C)‖−1∞ is regarded as the stability margin
of the closed-loop system [P,C]. The design of the optimal
robust controller can be attributed to solving an H∞ problem
with respect to the Gang of Four transfer matrix. Specifically,
the optimization problem is aimed at computing the following
maximum stability margin:

max
C

{
‖GoF(P,C)‖−1∞ : C stabilizes P

}
. (4)

This is a special H∞ problem, and can be reduced to the
Nehari problem, namely, the one-block H∞ model matching
problem, which has been well studied and neatly solved [2],
[7], [13].

III. A CASCADED TWO-PORT MODEL FOR NCSS

A. Two-port Networks as Communication Channels

Modeling electrical devices and their connections by two-
port networks has been widely accepted and commonly used
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(a) A single two-port network.

(b) A one-stage two-port connection.

(c) Two-port NCS with one-stage of two-port network.

Fig. 3: Two-port network T .

[19], [20]. In our study, we use two-port networks to model un-
certain bidirectional communication channels. The network T
in Fig. 3(a) has two external ports, with one port composed
of signals v, w and the other of signals u, y. A two-port
network T has various representations with respect to dif-
ferent parameters, such as impedance parameters, admittance
parameters, hybrid parameters, transmission parameters and
so on. In this study, we will focus on the representation with
the transmission parameters, which will be simply called the
transmission representation. Then, we let u, v be the downlink
signals both with dimension m and let w, y be the uplink
signals both with dimension p. With a little abuse of notation,
we denote the transmission (parameter) matrix of the two-port
network as T , which fully characterizes the communication
channel as follows:

T =

[
T11 T12
T21 T22

]
∈ P(m+p)×(m+p) and

[
v
w

]
= T

[
u
y

]
. (5)

Here, the symbol T stands for both the two-port network itself
and its transmission matrix for notational simplicity. When we
cascade two channels, their transmission matrices will simply
multiply together, which is one major advantage to utilize the
transmission representation for communication channels. It is
worth noting that the transmission representation of a two-port
network is also called the chain-scattering representation and
has been used to solve the H∞ control problems in [21].

When the communication channel is perfect, i.e., the chan-
nel involves no distortions or interferences, the transmission
matrix is simply

T =

[
Im 0
0 Ip

]
.

++

++

++

++

-

Fig. 4: Plant with the uncertainty quartet.

When the channel admits both distortions and interferences,
we model the perturbed transmission matrix as

T = I + ∆ =

[
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
,

and throughout the paper, it is assumed that

∆ =

[
∆÷ ∆−
∆+ ∆×

]
∈ RH∞ and ‖∆‖∞ < 1.

The subscripts ÷,−,+,× for ∆ representing different uncer-
tainties were firstly used in [32] for the purpose to describe
various connections vividly, as is shown momentarily. The
four-block matrix ∆ will be called the uncertainty quartet in
this study.

As shown in Fig. 3(b), we connect a two-port network T to
the plant P and denote its transmission matrix as T = I + ∆.
It is shown in [21], [32] that combining equation (5) with
y = Pu yields a perturbed plant P̃ from v to w via the LFT,

P̃ = LFT
([
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
, P

)
(6)

= [(Ip + ∆×)P + ∆+][Im + ∆÷ + ∆−P ]−1.

The diagram in Fig. 4 shows how the plant P is affected by
uncertainties in a quartet. Specifically, we can assign each of
the four blocks in an uncertainty quartet a detailed explanation
[32], namely, the uncertainty of inverse multiplication (÷),
inverse addition (−), addition (+) and multiplication (×). The
diagonal blocks ∆÷,∆× and the off-diagonal blocks ∆−,∆+

model two types of perturbations in a two-port network. To
be precise, the diagonal blocks represent multiplicative linear
distortions of the transmitted signals, mostly due to signal
attenuations in the fading channel. The off-diagonal blocks
represent additive interference from the reverse signals, which
occurs mostly in bidirectional communication channels.

An uncertainty quartet can model some types of malicious
or intelligent attacks as well. For instance, ∆÷ and ∆× can
model packet loss processes or denial of service (DoS) attacks
within bidirectional communication channels. All four blocks
in an uncertainty quartet can be used to model false data
injection attacks to the controller or plant.

In order to keep the perturbed system well-defined, we add
a mild condition on the channel uncertainty ∆, so that the
transfer matrix Im+∆÷+∆−P has full normal rank. Actually,
this can be guaranteed as long as ∆ is small enough.
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Fig. 5: Standard closed-loop system equivalent to one-stage
two-port NCS.

It is worth noting that describing an uncertain system using
a linear fractional transformation is not new in robust control
[4], [21]. Traditionally, an uncertain system takes the form
of LFT(G,∆), a fixed LFT of an uncertain component ∆.
Nevertheless, in our study, an uncertain system takes the form
of LFT(I + ∆, P ) that is an uncertain LFT of a possibly
known plant P . The main difference between the fixed LFT
and the uncertain one relies on how the uncertainty appears
and functions within the NCS.

Consider the situation when we close the loop in Fig. 3(b)
with controller C that stabilizes P , as in Fig. 3(c). Following
the derivation in [24], we separate the uncertainty quartet ∆
and the nominal closed-loop system [P,C]. Then we obtain a
feedback connection as in Fig. 5. The robust stability of this
system can be simply analyzed through the well-known small-
gain theorem [4, Theorem 8.1], resulting in the following
stability condition.

Lemma 2. Assume that the nominal system [P,C] is stable.
For r ∈ [0, 1), the two-port NCS in Fig. 3(c) is stable for all
∆ ∈ RH∞ with ‖∆‖∞ ≤ r if and only if

r < ‖GoF(P,C)‖−1∞ . (7)

Here, the stability margin ‖GoF(P,C)‖−1∞ comes into the
picture again, as it appears in Lemma 1 for the gap-type uncer-
tainties. This motivates us to explore a unified robust stability
condition with combined gap-type model uncertainties and
two-port uncertainty quartets, which will be shown in the next
section. At this moment, one may wonder if the small-gain
theorem can be further utilized in a general cascaded two-
port NCS. Actually, neither the small-gain theorem nor the
more general method via µ-analysis, is applicable to the robust
stabilization of a general two-port NCS due to the existence
of simultaneous uncertainties from multiple sources. We will
revisit this point soon in the next subsection.

B. Graph Analysis on Cascaded Two-port NCSs

We already know that a system perturbed by an uncertainty
quartet can be expressed by LFT(I+∆, P ). In this subsection,
we aim to express the system perturbed by cascaded two-
port uncertainties with its graph. As illustrated in Fig. 2, the
plant P = NM−1 and controller C = V U−1 expressed by
RCFs communicate with each other through cascaded two-
port networks. Considering the input and output of P , we can

...

...

+

+

Fig. 6: Equivalent closed-loop system.

represent every element in the graph of P through its graph
symbol as [

u
y

]
=

[
M
N

]
x, (8)

for every x ∈ H2.
Consider the transmission representations of the two-port

networks {Tk}lk=1. If the kth stage of the two-port network
admits an uncertainty ∆k ∈ RH∞, then the corresponding
transmission matrix is denoted as Tk = I + ∆k. For each
integer k ∈ [1, l − 1], we can associate the first k stages
of the cascaded two-port networks with the plant P , and the
remaining l−k stages with the controller C. Then the diagram
in Fig. 2 is equivalently transformed into that in Fig. 6 to form
a standard closed-loop system [P̃k, C̃k]. Signals in Fig. 6 are
described by[
uk
yk

]
= Tk · · ·T1

[
u
y

]
= (I + ∆k) · · · (I + ∆1)

[
u
y

]
,[

vk
wk

]
=T−1k+1 · · ·T

−1
l

[
v
w

]
=(I + ∆k+1)−1· · · (I + ∆l)

−1
[
v
w

]
.

Take equations (1) and (8) into account. If we view P to-
gether with {Tj}kj=1 as a perturbed plant P̃k with uncertainties
{∆j}kj=1, P̃k = NkM

−1
k can be determined by its graph

GP̃k
=

[
Mk

Nk

]
H2 = (I + ∆k) · · · (I + ∆1)GP . (9)

Similarly, if we view C together with {Tj}lj=k+1 as a
perturbed controller C̃k with uncertainties {∆j}lj=k+1, C̃k =

VkU
−1
k can be determined by its inverse graph

G′
C̃k

=

[
Vk
Uk

]
H2 = (I + ∆k+1)−1 · · · (I + ∆l)

−1G′C , (10)

where the inverse graph G′C of C = V U−1 is defined as

G′C =

[
V
U

]
H2. (11)

Note that the system in Fig. 6 is an equivalent standard
closed-loop system [P̃k, C̃k] with P̃k as plant and C̃k as
controller. For convenience, we include k = 0 and k = l with
the interpretation that the entire two-port network is grouped
with controller C for k = 0, and with plant P for k = l. Since
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we assume ∆k ∈ RH∞ and ‖∆k‖∞ < 1, both I + ∆k and
(I + ∆k)−1 are in RH∞. Hence (Mk, Nk) is right coprime,
and so is (Uk, Vk). As the systems are well-posed here, both
Mk and Uk have full normal rank. Therefore, the perturbed
plants and controllers P̃k and C̃k are well-defined by their
respective graphs for each k = 0, 1, . . . , l.

C. Stability of Two-port NCSs

The stability of the two-port NCS is defined in a usual way.

Definition 1. The NCS in Fig. 6 is said to be stable if for
all simultaneously injected signals pk and qk ∈ H2, k =
0, 1, . . . , l, it holds that the signals on all ports, namely, uk,
yk, vk and wk, k = 0, 1, . . . , l, are in H2.

In brief, to verify stability of an NCS, we inject energy-
bounded signals from all possible inputs, then check if all
the output signals are energy-bounded. Note that the NCS is
composed of LTI systems so that it possesses the superposition
principle. Hence the procedures to determine the stability can
be simplified as follows.

Lemma 3. The NCS is stable if and only if the equivalent
closed-loop system [P̃k, C̃k] is stable for k = 0, 1, . . . , l.

Proof. The necessity is obvious as [P̃k, C̃k] will be stable if
the NCS is stable. For sufficiency, assume that [P̃k, C̃k] is
stable. Let pk, qk ∈ H2, then it follows that uk, wk ∈ H2. It
is also clear from the well-posedness assumption that I + ∆k

and (I + ∆k)−1 ∈ RH∞. Hence every signal in the NCS
can be regarded as an output of a stable system with uk and
wk ∈ H2 as its input signals. Then the signals on all ports are
in H2, which completes the proof.

Naturally, one would ask what the exact condition is for the
two-port NCS in Fig. 2 to be stable, if the plant, controller and
communication channels involve simultaneous uncertainties
introduced previously. It is worth noting that the uncertainties
in the plant and controller are modeled differently from those
in the two-port communication channels, which introduces a
possible technical difficulty. If only the uncertainty quartets are
assumed to exist in the two-port NCS, then one may attempt
to solve this particular robust stability problem through µ-
analysis [4], [27]. However, in general, the exact computation
of µ-value is NP hard and only a numerical upper bound is
obtainable via the convex optimization [33].

IV. ROBUST STABILITY OF TWO-PORT NCSS

The main result of this paper concerns the robust stability
condition of the two-port NCS, which is stated as follows.

Theorem 1. Assume that the nominal system [P,C] is stable.
For rp, rc, rk ∈ [0, 1), the NCS in Fig. 2 is stable for all
P̃ ∈ B(P, rp), C̃ ∈ B(C, rc) and ∆k ∈ RH∞ with ‖∆k‖∞ ≤
rk, k = 1, 2, . . . , l, if and only if

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk

< arcsin ‖GoF(P,C)‖−1∞ . (12)

This theorem characterizes the trade-off between two types
of uncertainties from the system modeling and the commu-
nication channels, as revealed in equation (12). Theorem 1
reduces to Lemma 1 by letting rk = 0 for each integer
k ∈ [1, l]. It reduces to Lemma 2 by letting rk = 0 for each
integer k ∈ [2, l], rp = 0 and rc = 0. The stability margin
‖GoF(P,C)‖−1∞ given here is the same as that in Lemmas 1
and 2, resulting in the same controller synthesis problem.

Theorem 1 was first announced in conference paper [25]
without proof. In the rest of this section, we prove its suffi-
ciency part, and in the next section, we prove the necessity
part after introducing the needed mathematical background.

An uncertainty quartet in a two-port network introduces two
special uncertainty neighborhoods, which are related to the
graphs of systems, shown in equations (9) and (10). The formal
definition of the neighborhoods are as follows.

Definition 2. Let P = NM−1 be an RCF. Two uncertainty
neighborhoods, centered at P and with radius r ∈ [0, 1), are
defined as

N1(P, r) =

{
P̃ = ÑM̃−1 :

[
M̃

Ñ

]
= (I + ∆)

[
M
N

]
,

∆ ∈ RH∞, ‖∆‖∞ ≤ r
}
,

N2(P, r) =

{
P̃ = ÑM̃−1 :

[
M̃

Ñ

]
= (I + ∆)−1

[
M
N

]
,

∆ ∈ RH∞, ‖∆‖∞ ≤ r
}
.

It can be seen that N1(P, r) corresponds to the uncertainty
neighborhood at the plant side as in (9), and N2(P, r) corre-
sponds to the neighborhood at the controller side as in (10).
These two types of uncertainty neighborhoods are also closely
related to the gap balls. The following result is true in light
of [34, Theorem 1].

Lemma 4. For every r ∈ [0, 1), it holds

N1(P, r) ∪N2(P, r) ⊂ B(P, r).

The above lemma shows that the two-port neighborhoods
are contained in the gap ball with the same nominal system
P and radius r. Using this result, we can show the sufficiency
part of Theorem 1 as follows.

Let rp, rc and {rk}lk=1 satisfy condition (12). For each
integer k ∈ [0, l], excite the network at only the kth stage,
as in Fig. 6. A slight difference in the following is that the
plant and controller are replaced with the perturbed ones, P̃
and C̃, respectively. Denote their RCFs as P̃ = ÑM̃−1 and
C̃ = Ṽ Ũ−1, respectively, and let[

Mk

Nk

]
= (I + ∆k) · · · (I + ∆1)

[
M̃

Ñ

]
,[

Vk
Uk

]
= (I + ∆k+1)−1 · · · (I + ∆l)

−1
[
Ṽ

Ũ

]
.

From the well-posedness assumption, we know that the kth
perturbed plant P̃k = NkM

−1
k is well-defined. So is the
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perturbed controller C̃k = VkU
−1
k . Denote P̃0 = P̃ and

C̃l = C̃ for convenience. It follows from Lemma 4 that

P̃k ∈ N1(P̃k−1, rk) ⊂ B(P̃k−1, rk),

C̃k ∈ N2(C̃k+1, rk+1) ⊂ B(C̃k+1, rk+1).

By iteratively utilizing the triangular inequality of the angular
metric [8, Proposition 1], we obtain inequalities

arcsin δ(P̃k, P̃ ) ≤
k∑
j=1

arcsin δ(P̃j , P̃j−1) ≤
k∑
j=1

arcsin rj ,

arcsin δ(C̃k, C̃)≤
l∑

j=k+1

arcsin δ(C̃j−1, C̃j)≤
l∑

j=k+1

arcsin rj .

Recall P̃ ∈ B(P, rp) and C̃ ∈ B(C, rc). Applying the
triangular inequality again yields

arcsin δ(P̃k, P ) ≤ arcsin rp +

k∑
j=1

arcsin rj ,

arcsin δ(C̃k, C) ≤ arcsin rc +

l∑
j=k+1

arcsin rj .

It follows from Lemma 1 and condition (12) that the equivalent
closed-loop system [P̃k, C̃k] in Fig. 6 is stable for each integer
k ∈ [0, l], and thus the NCS in Fig. 2 is robustly stable, in
light of Lemma 3. This completes the proof for the sufficiency
part of Theorem 1.

V. NECESSITY OF THE ROBUST STABILITY CONDITION

The necessity of Theorem 1 will be proved by using the
contrapositive argument. Given condition (12) violated, we
will construct a perturbed plant P̃ , a perturbed controller C̃
and a series of uncertainties {∆k}lk=1, which destabilize the
NCS.

The stability of the feedback system is closely related to the
minimum angle between the graphs of the plant and controller.
The construction of the worst-case uncertainties involved in
P̃ and C̃ is based on [8, Theorem 2]. The construction
of the worst-case uncertainty quartets {∆k}lk=1 is based on
geometric properties of finite dimensional subspaces involving
the rotation of vectors between subspaces.

A. Grassmann Manifold and Rotation of Subspaces

This subsection develops technical results in finite dimen-
sional subspaces, which help construct the worst-case uncer-
tainty quartets. For detailed background, see [35]–[37].

The set of all m-dimensional subspaces in Fn, denoted by
Gm,n, is called the Grassmann manifold. For U ∈ Gm,n, its
orthogonal complement is denoted by U⊥. Let U ∈ Fn×m
and U⊥ ∈ Fn×(n−m) be the isometries onto U and U⊥,
respectively. Similar notation applies to another subspace
V ∈ Gm,n. The principal angles between U and V are defined
as [36], [37]

θi(U ,V) := arccosσm+1−i(U
∗V )

in a nonincreasing order for i = 1, 2, . . . ,m. Denote

θ(U ,V) := [ θ1(U ,V) · · · θm(U ,V) ]
T

as the vector composed of principal angles. Denote the largest
angle as θ̄(U ,V) := θ1(U ,V) and the smallest one as
θ(U ,V) := θm(U ,V).

The gap between U and V , as defined in (2), can now be
obtained in various ways as follows [10], [36]:

γ(U ,V) = ‖U∗V⊥‖ = min
Q∈Fm×m

‖U − V Q‖

= sin θ̄(U ,V).
(13)

Without loss of generality, assume 2m ≤ n. Applying the C-S
decomposition [35] to unitary matrix [U U⊥]

∗
[V V⊥] yields

[U U⊥]
∗

[V V⊥] =

[
X1 0
0 X2

]C −S 0
S C 0
0 0 I

[Y1 0
0 Y2

]∗
,

where X1, Y1 ∈ Fm×m and X2, Y2 ∈ F(n−m)×(n−m) are
unitary matrices, and

C = diag[cos θ1(U ,V), cos θ2(U ,V), . . . , cos θm(U ,V)],

S = diag[sin θ1(U ,V), sin θ2(U ,V), . . . , sin θm(U ,V)]

are diagonal matrices. We now construct the principal bases
of U , U⊥, V and V⊥, respectively, as[

Û Û⊥

]
= [U U⊥]

[
X1 0
0 X2

]
,

[
V̂ V̂⊥

]
= [V V⊥]

[
Y1 0
0 Y2

]
.

Then there holds equality[
Û Û⊥

]∗ [
V̂ V̂⊥

]
=

C −S 0
S C 0
0 0 I

 = exp

0 −Θ 0
Θ 0 0
0 0 0

,
where Θ = diag[θ(U ,V)] is a diagonal matrix of the ordered
principal angles. We next construct a set of unitary operators
parametrized by λ ∈ [0, 1] as follows:

Φλ : Gm,n → Gm,n = X 7→ ΦλX

=
[
Û Û⊥

]
exp

 0 −λΘ 0
λΘ 0 0
0 0 0

[Û Û⊥

]∗
.

(14)

It is straightforward to verify that

Φ0

[
Û Û⊥

]
=
[
Û Û⊥

]
and Φ1

[
Û Û⊥

]
=
[
V̂ V̂⊥

]
.

As a consequence, ΦλU for λ ∈ [0, 1] is a curve (geodesic)
from U to V [36]. Here, Φ1 is called the direct rotation from
U to V .

The principal angles, especially the smallest one, can be
defined for a pair of subspaces with possibly different dimen-
sions. Let U ∈ Gm,n and W ∈ Gp,n. The smallest principal
angle between them is defined as

θ(U ,W) : = arccos σ̄(U∗W )

= min
u∈U,‖u‖=1,
w∈W,‖w‖=1

arccos Re(u∗w), (15)
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where W ∈ Fn×p is an isometry onto W and the second
equality is simply from the singular value decomposition
(SVD) on U∗W . Let the minimum in (15) be attained at unit
vectors û ∈ U and ŵ ∈ W . Then û and ŵ form a pair of
principal vectors corresponding to the smallest principal angle
θ(U ,W), in the sense that

û∗ŵ = cos θ(U ,W). (16)

Based on the rotation of subspaces, we introduce the fol-
lowing result on how to construct matrices {∆k}lk=1 so that
the rotated subspace (I + ∆l) · · · (I + ∆1)U intersects W
nontrivially.

Proposition 1. Let U ∈ Gm,n and W ∈ Gp,n, with
r = sin θ(U ,W) ∈ [0, 1). Then for rk ∈ [0, 1), subject to∑l
k=1 arcsin rk = arcsin r, there exist a series of matrices

∆k ∈ Fn×n, satisfying ‖∆k‖ = rk, k = 1, 2, . . . , l, such that

θ [(I + ∆l) · · · (I + ∆1)U ,W] = 0.

Proof. We prove the proposition by construction. Let û and
ŵ be defined in (16), and find a matrix Û0 such that[
û Û0

]
∈ Fn×m be an isometry onto U . Construct an m-

dimensional subspace V := R
([
ŵ Û0

])
, and it is clear that

θ(U ,V) = [θ(U ,W) 0 · · · 0]
T and θ(V,W) = 0. Hence the

only nonzero (the largest) angle between U and V satisfies that

θ̄(U ,V) = θ(U ,W) = arcsin r := ψ.

Let Φλ be defined in (14). Clearly, the principal bases of U
and V are

[
û Û0

]
and

[
ŵ Û0

]
respectively. We set

λk =

∑k
j=1 arcsin rj

arcsin r
, k = 0, 1, . . . , l.

Then λ0 = 0 and λl = 1. Denote by V̂k := Φλk
Û . Hence,

V̂k =
[
v̂k Û0

]
for k = 0, 1, . . . , l, with v̂0 = û and v̂l = ŵ.

By the properties of the direct rotation [37], we know that the
only nonzero (the largest) principal angle between R(V̂k−1)
and R(V̂k) is

arccos(v̂∗k−1v̂k) = arcsin rk := ψk, k = 1, 2, . . . , l.

Next for each integer k ∈ [1, l], we construct

∆k = (v̂k cosψk − v̂k−1) v̂∗k−1. (17)

Based on simple plane geometry, we know

‖∆k‖ =
∥∥(v̂k cosψk − v̂k−1) v̂∗k−1

∥∥
= ‖v̂k cosψk − v̂k−1‖
= sinψk = rk.

We claim
V = (I + ∆l) · · · (I + ∆1)U , (18)

which can be deduced from that

(I + ∆1)Û = Û + (v̂1 cosψ1 − û)û∗
[
û Û0

]
=
[
û Û0

]
+ (v̂1 cosψ1 − û) [1 0 · · · 0]

=
[
v̂1 cosψ1 Û0

]
,

and that each integer k ∈ [1, l − 1],

(I + ∆k+1)
[
v̂k cosψ1 · · · cosψk Û0

]
=
[
v̂k cosψ1 · · · cosψk Û0

]
+ (v̂k+1 cosψk+1 − v̂k) [cosψ1 · · · cosψk 0 · · · 0]

=
[
v̂k+1 cosψ1 · · · cosψk+1 Û0

]
.

Therefore, we have

θ [(I + ∆l) · · · (I + ∆1)U ,W] = θ (V,W) = 0,

which completes the proof.

B. Proof for the Necessity Part

In this subsection, we show the necessity of the robust
stability condition in Theorem 1. Based on Lemma 3, we know
the stability of the two-port NCS relies on the stability of the
equivalent closed-loop systems [P̃k, C̃k] for k = 0, 1, . . . , l.
Moreover, we intend to relate the stability to what we have
introduced about the subspaces, based on the following graphi-
cal interpretation of the closed-loop stability. The stability of a
closed-loop system [P,C] is equivalent to the complementarity
of the graphs of the plant and controller [8], i.e.,

GP ⊕ G′C = Hm2 ⊕H
p
2,

where symbol ⊕ denotes the direct sum of two linear sub-
spaces. Consequently, a necessary condition for [P,C] to be
stable is given in [10, Proposition 19] as

‖GoF(P,C)‖−1∞
= min
ω∈R∪{∞}

sin θ[G(P )(jω),G′(C)(jω)] > 0, (19)

where
G(P )(s) := R

([
M(s)
N(s)

])
is defined as the pointwise graph of plant P = NM−1 for
each s on the closed right half plane, and similarly, G′(C)(s)
as the inverse pointwise graph of controller C.

Note that the contents of Subsection V-A are about rotations
of finite dimensional subspaces through a series of multiplica-
tive operators in the form of I+∆k, where {∆k}lk=1 are well
bounded. To connect the static matrices with transfer matrices,
we state the following lemma on interpolating a complex-
valued matrix with a stable real rational transfer matrix.

Lemma 5. For matrix ∆ ∈ Cn×n and some frequency
ω̄ ∈ R ∪ {∞}, there exists a transfer matrix ∆̃ ∈ RH∞
that interpolates ∆ at s = jω̄, i.e., ∆̃(jω̄) = ∆, and satisfies

‖∆̃‖∞ = ‖∆‖.

This lemma can be proved through the standard boundary
interpolation [12], [14].

We are now ready to prove the necessity part of Theorem 1.
Using the contrapositive argument, we assume that

arcsin rp + arcsin rc +

l∑
k=1

arcsin rk ≥

arcsin ‖GoF(P,C)‖−1∞ .
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Next we will construct the worst-case uncertainties such that
the two-port NCS is unstable. Specifically, we only need to
show that for a certain stage k, say k = l, the equivalent
closed-loop system [P̃l, C̃] is unstable. From [8, Theorem 2],
there holds

min

{
arcsin

∥∥∥GoF(P̃ , C̃)
∥∥∥−1
∞

: P̃ ∈ B(P, rp), C̃ ∈ B(C, rc)

}
= arcsin ‖GoF(P,C)‖−1∞ − arcsin rp − arcsin rc

≤
l∑

k=1

arcsin rk. (20)

Let a particular closed-loop system [P̃ , C̃] satisfy∥∥∥GoF(P̃ , C̃)
∥∥∥−1
∞
≤ sin

(
l∑

k=1

arcsin rk

)
with P̃ ∈ B(P, rp) and C̃ ∈ B(C, rc). If∥∥∥GoF(P̃ , C̃)

∥∥∥−1
∞

< sin

(
l∑

k=1

arcsin rk

)
,

we can always choose r̄k ∈ (0, rk] for k = 1, 2, . . . , l

such that ‖GoF(P̃ , C̃)‖−1∞ = sin
(∑l

k=1 arcsin r̄k

)
. Hence,

without loss of generality, it is assumed that∥∥∥GoF(P̃ , C̃)
∥∥∥−1
∞

= sin

(
l∑

k=1

arcsin rk

)
(21)

holds for some P̃ ∈ B(P, rp) and C̃ ∈ B(C, rc).
The above completes the construction of the worst-case

perturbed plant P̃ and controller C̃. Next we will construct
uncertainty quartets {∆k}lk=1 in order to complete the proof.

It can be deduced from the stability of [P̃ , C̃] and equa-
tion (19) that the most “vulnerable” frequency is given by

ω̄ := argmin
ω∈R∪{∞}

sin θ
[
G(P̃ )(jω),G′(C̃)(jω)

]
. (22)

Noting P̃ ∈ Pp×m and C̃ ∈ Pm×p, we let n = m + p,
and denote subspaces U = G(P̃ )(jω̄) ∈ Gm,n and W =
G′(C̃)(jω̄) ∈ Gp,n. It follows from (19) that

θ(U ,W) = θ
[
G(P̃ )(jω̄),G′(C̃)(jω̄)

]
= arcsin

∥∥∥GoF(P̃ , C̃)
∥∥∥−1
∞
. (23)

Following from Proposition 1 with F = C and {rk}lk=1 subject
to (21), there exist matrices ∆k ∈ Cn×n satisfying ‖∆k‖ = rk
such that

θ [(I + ∆l) · · · (I + ∆1)U ,W] = 0. (24)

Lemma 5 implies the existence of transfer matrix (uncertainty
quartet) ∆̃k ∈ RH∞ that interpolates ∆k for each integer
k ∈ [1, l] in the sense that

∆̃k(jω̄) = ∆k and ‖∆̃k‖∞ = ‖∆k‖.

Let the perturbed plant P̃l = NlM
−1
l be determined by[

Ml

Nl

]
=
(
I + ∆̃l

)
· · ·
(
I + ∆̃1

)[M̃
Ñ

]
,

where ÑM̃−1 is a RCF of P̃ . As a result, it is clear that

G(P̃l)(jω̄) = (I + ∆l) · · · (I + ∆1)G(P̃ )(jω̄).

From equation (24), we conclude that

θ
[
G(P̃l)(jω̄),G′(C̃)(jω̄)

]
= 0.

Hence, the necessary condition for stability (19) is violated as

min
ω∈R∪{∞}

sin θ
[
G(P̃l)(jω),G′(C̃)(jω)

]
= sin 0 = 0,

and [P̃l, C̃] must be unstable. This completes the proof for the
necessity part of Theorem 1.

VI. EXTENSION TO FREQUENCY-WISE STABILITY
CONDITION

In retrospect, we have assumed that the uncertainty quartets
∆k ∈ RH∞ for 1 ≤ k ≤ l are measured by their H∞ norms,
and the model uncertainties in the plant and controller are
measured by the gap metric. In this section, we will study the
stabilization of the two-port NCS with respect to frequency-
wise bounded uncertainties. Additionally, we use the ν-gap
metric [12] to describe the plant and controller uncertainties so
to further reduce the conservatism of the robustness analysis.

In terms of practical systems, we may have some prior
knowledge of the uncertainties, which is more precise than
uniform bounds over all frequencies. For instance, the un-
certainties in mechanical systems can be estimated by ana-
lyzing the mechanical structures, the uncertainties in wireless
communication channels can be estimated by analyzing the
transmission medium and the distribution of obstacles, and so
on. Through frequency-wise bounds, more precise characteri-
zations in terms of the weighting functions can be adopted to
describe the uncertainties, in contrast to the previously studied
ones with uniform H∞-norm bounds or the gap-type bounds.
Furthermore, appropriate weightings on the uncertainties and
systems are often employed to solve the synthesis problem for
H∞ control, which provide the flexibility on fine tuning the
feedback controllers. These weighting functions become more
important in complex networks involving multiple dynamical
systems and uncertainties, such as satellite networks, wireless
sensor networks and two-port NCSs.

A. Stability Condition

We start with the definitions of weighting functions. The
frequency-wise bound for the uncertainty quartet ∆ is de-
scribed by

σ̄[∆(jω)] ≤ |W (jω)|, ∀ ω ∈ R, (25)

where W ∈ RH∞ is a scalar weighting function. Without loss
of generality, W−1 ∈ RH∞ is assumed. Then equation (25)
can be equivalently expressed as ‖W−1∆‖∞ ≤ 1. If W (jω)
is a constant function, we return to the unweighted case.

The frequency-wise bound for the gap-type uncertainty is
related to the ν-gap metric [11], [12]. For a closed-loop system
[P,C], denote by η[P,C] the number of its closed-loop poles
on the open right half complex plane. Recall that γ(·, ·) is the



10

gap metric as defined in (2). Then the ν-gap metric between
P1 and P2 is defined as

δν(P1, P2) := sup
ω∈R

γ [G(P1)(jω),G(P2)(jω)]

if η[P2,−P∼1 ] = η[P1,−P∼1 ], and δν(P1, P2) = 1 otherwise.
Given an LTI system P ∈ P and W,W−1 ∈ RH∞, we define
the weighted ν-gap ball as [12, Chapter 3]

Bν(P,W ) :=
{
P̃ ∈ P : δν(P, P̃ ) < 1,

γ
[
G(P )(jω),G(P̃ )(jω)

]
≤ |W (jω)|, ∀ω ∈ R

}
,

(26)

where W is a scalar weighting function. When W (jω) is a
constant function, the above set reduces to the ν-gap ball.
The requirement on δν(P, P̃ ) < 1 guarantees that we can
continuously perturb P to P̃ [12, Chapter 3].

The following result extends robust stability condition (12)
in Theorem 1 to cover frequency-wise bounded uncertainties.

Theorem 2. Assume that the nominal system [P,C] is sta-
ble. Let Wp,Wc,Wk,W

−1
k ∈ RH∞ satisfy ‖Wp‖∞ < 1,

‖Wc‖∞ < 1, and ‖Wk‖∞ < 1. The NCS in Fig. 2 is stable
for all P̃ ∈ Bν(P,Wp), C̃ ∈ Bν(C,Wc), and ∆k ∈ RH∞
with ‖W−1k ∆k‖∞ ≤ 1, k = 1, 2, . . . , l, if and only if for all
ω ∈ R, it holds uniformly

arcsin |Wp(jω)|+ arcsin |Wc(jω)|+
l∑

k=1

arcsin |Wk(jω)|

< arcsin{σ̄[GoF(P,C)(jω)]−1}. (27)

Theorem 2 precisely quantifies the frequency-wise bounded
uncertainties that the two-port NCS can tolerate while the
closed-loop stability is maintained. Under the circumstances
that all weighting functions are constant, i.e., Wp = rp,
Wc = rc, and Wk = rk ∈ [0, 1), k = 1, 2, . . . , l, Theorem 2
virtually reduces to Theorem 1 except that the gap metric
in Theorem 1 is replaced by the ν-gap metric. On the other
hand, this shows that Theorem 1 holds true when the model
uncertainties are measured by the ν-gap metric as well.

An earlier version of Theorem 2 was announced in confer-
ence paper [26] without proof, involving only the frequency-
wise bounded uncertainties in two-port networks. The new
version here is more general as the model uncertainties are
incorporated, and its complete proof is given in Appendix A.

B. Synthesis with Frequency-wise Uncertainties

Regarding the robust stability condition in Theorem 2,
one may ask naturally what an optimal robust controller is,
and how we obtain it efficiently. Suppose we are given a
nominal plant P and uncertainty bounds Wp, Wc and Wk,
k = 1, 2, . . . , l as in Theorem 2. A feasible controller C
should stabilize the nominal closed-loop system [P,C] and
satisfy condition (27). Denote a composition of the weighting
functions via

|W (jω)| := sin

(
arcsin |Wp(jω)|+ arcsin |Wc(jω)|

+

l∑
k=1

arcsin |Wk(jω)|
)
. (28)

Equivalently, the controller satisfies that

σ̄[W (jω)GoF(P,C)(jω)] < 1,

for all ω ∈ R uniformly, or equivalently

‖WGoF(P,C)‖L∞ < 1, (29)

where ‖ · ‖L∞ denotes the L∞ norm. If such controllers exist,
they are not necessarily unique. Naturally, the optimal robust
controller at which we target should be given by

Copt = argmin
C

‖WGoF(P,C)‖L∞ . (30)

If W (jω) is a nonzero constant, then the problem in (30)
reduces to the previously introduced synthesis problem (4),
which has been elegantly solved in [13]. If W (jω) can be
extended to the complex plane such that W,W−1 ∈ RH∞,
the optimal robust controller can be obtained by solving an
H∞ control problem. Essentially, it is a two-block H∞ model
matching problem, which will be shown in details momentar-
ily. However, in general, there does not exist such an extension
since what we have involves transcendental functions of “sine”
and “arcsine”. In this case, solving the problem directly is
difficult and may result in infinite order controllers. In practice,
we may attempt to approximate W (jω) by Ŵ (jω) subject
to Ŵ , Ŵ−1 ∈ RH∞. Since only the magnitude response of
W (jω) is known, we propose the following approximation
method based on finite samples from |W (jω)|, which is
tailored from an algorithm in [38].

Algorithm 1 Real Rational Approximation

1. Set sampling period as Ts and number of samples as N .
2. Construct the sampled transfer function of |W (jω)| as∣∣Wz(e

jω)
∣∣ :=

∣∣∣∣W (
j

2

Ts
tan

ω

2

)∣∣∣∣ .
3. For 0 ≤ k ≤ N − 1, compute data sample sequence

Φk =
∣∣∣Wz(e

j2πk/N )
∣∣∣2 ,

and for 0 ≤ i ≤ N−1, compute N -point inverse discrete
Fourier transformation of {Φk} according to

φi =
1

N

N−1∑
k=0

Φke
j2πik/N .

4. Compute window function wi according to

wi = 1− |i|
N

for |i| ≤ N and form the two-sided polynomial

R(z) =

N∑
i=−N

wiφiz
−i.

5. Apply the balanced stochastic realization (BSR) algo-
rithm in [38] on R(z), and obtain a discrete-time system
Ŵz(z) with prescribed order r, and the approximation is

Ŵ (s) := Ŵz

(
2 + Tss

2− Tss

)
.
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It can be shown that the approximation error can be made
arbitrarily small by taking N and r sufficiently large. To
proceed with the controller design, let the normalized coprime
factorizations be P = NM−1 = M̃−1Ñ . Then there exist
U, V, Ũ , Ṽ ∈ RH∞ [4, Chapter 11], [7] such that[
Ũ −Ṽ
−Ñ M̃

] [
M V
N U

]
=

[
M V
N U

] [
Ũ −Ṽ
−Ñ M̃

]
=

[
I 0
0 I

]
.

It is well-known from the Youla parametrization [39] that all
controllers stabilizing P can be parametrized in the form

C = (V +MQ)(U +NQ)−1 = (Ũ +QÑ)−1(Ṽ +QM̃),

where Q ∈ RH∞. Let Ŵ be obtained from Algorithm 1.
Substituting W with Ŵ into (30), we target at minimizing

‖ŴGoF(P,C)‖L∞ = ‖ŴGoF(P,C)‖∞.

This is intuitively a four-block H∞ model matching problem
due to the four-block structure of the Gang of Four transfer
matrix. However, we can reduce it to a two-block problem by
noting [7, Theorem 1]. It follows that

‖ŴGoF(P,C)‖∞=

∥∥∥∥[Ŵ (M∼V +N∼U) + ŴQ

ŴI

]∥∥∥∥
L∞

. (31)

Hence, by substituting Q with Ŵ−1Q, we obtain the optimal
robust controller

Copt = (V + Ŵ−1MQopt)(U + Ŵ−1NQopt)
−1,

where Qopt is given by

Qopt = argmin
Q∈RH∞

∥∥∥∥[Ŵ (M∼V +N∼U) +Q

ŴI

]∥∥∥∥
L∞

.

Precisely speaking, Qopt solves a special two-block H∞ model
matching problem, which can be approached by standard
methods; See, for instance, the γ-iteration algorithm in [40]
and [41, Chapter 8]. The order of the optimal robust controller
is no larger than the sum of the McMillan degrees of P and Ŵ .
An illustrative example will be presented in the next section.

VII. EXAMPLES AND SIMULATIONS

In this section, we first present an analytic example of a
special two-port NCS containing two stages, illustrating the
sufficiency and necessity of the main robust stability condition
in Theorem 1. Then we simulate a two-port NCS in the
presence of time delays and quantization errors induced by
two-port communication channels, which shows, regarding
Theorem 1, its capability of dealing with the nonlinear per-
turbations. Finally, we show an illustrative example about
designing an optimal robust controller given frequency-wise
bounded uncertainties regarding Theorem 2.

A. Analytic Example

Assume that plant P and the corresponding optimal robust
controller C are given respectively by

P (s) =

√
3√

3s+ 1
, C(s) = − 1√

3
.
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Fig. 7: Impulse responses for different choices of δ1 and δ2.

The associated robust stability margin is obtained as

‖GoF(P,C)‖−1∞ =

√
3

2
.

See [42, Chapter 9.5] for details. The two-port NCS contains
two stages, represented by the following uncertainty quartets

∆1 =
δ1
2

[
−1 −

√
3

0 0

]
and ∆2 =

δ2
2

[
0 −

√
3

0 −1

]
,

where δ1 > 0 and δ2 > 0 are the parameters of the uncertain-
ties satisfying ‖∆1‖∞ = δ1 ≤ r1 and ‖∆2‖∞ = δ2 ≤ r2.

We begin with the stability analysis for the equivalent
closed-loop system [P̃2, C̃2]. Similarly, we can analyze the
other one, namely [P̃1, C̃1], which should produce the same
result. From simple derivation based on equation (9), we have

GP̃2
=

[
(1− 1

2δ1)s+ 1√
3
− 2√

3
δ1 −

√
3
2 δ2

1− 1
2δ2

]
s+ 2√

3

H2.

Thus the characteristic polynomial of the closed-loop system
[P̃2, C̃2] can be determined as

c(s) =
√

3(1− δ1/2)s+ 2− 2(δ1 + δ2).

It is clear that [P̃2, C̃2] is stable if and only if all the roots of
c(s) are in the open left half complex plane, or equivalently
δ1+δ2 < 1. Based on Theorem 1, the robust stability condition
in (12) for this particular example can be obtained as

arcsin r1 + arcsin r2 < arcsin ‖GoF(P,C)‖−1∞ =
π

3
. (32)

The above inequality implies that δ1 + δ2 ≤ r1 + r2 < 1,
and guarantees the stability of the closed-loop system. Hence
(32) is a sufficient condition for the feedback stability of the
two-port NCS. On the other hand, by taking r1 = r2 = 0.5,
which violates (32), we can construct matrices ∆k satisfying
‖∆k‖∞ ≤ rk for k = 1, 2, such that the two-port NCS is
unstable by setting parameters δ1 = δ2 = 0.5. Hence (32) is
also a necessary condition. Fig. 7 shows the impulse responses
of the sensitivity function S̃2 = (1 + P̃2C̃2)−1 corresponding
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Fig. 8: System diagram with logarithmic quantizers.

to different choices of δ1 and δ2. When δ1 = δ2 ≤ 0.4, which
satisfies condition (32), the output signals are energy-bounded.
When δ1 = δ2 = 0.5, which violates condition (32) critically
in the sense that ∆1 and ∆2 are the worst-case uncertainties,
the output signal is a nonzero constant, implying that the two-
port NCS is unstable.

B. Simulation with Nonlinearity and Time Delay

Assume that plant P and the corresponding optimal robust
controller C are given respectively by

P (s) =
1

s2
, C(s) = − (1 +

√
2)s+ 1

s+ 1 +
√

2
.

The associated robust stability margin is obtained as

‖GoF(P,C)‖−1∞ =
(

4 + 2
√

2
)−1/2

.

See [42, Chapter 9.5] for details.
Shown in Fig. 8, we assume that the two-port network

suffers from nonlinear perturbations. Specifically the plant
and controller communicate through a bidirectional digital
channel equipped with time-invariant logarithmic quantizers.
The detailed definitions of the logarithmic quantizer Qδ : R→
R and the alternative logarithmic quantizer Q̃δ : R → R
can be referred to [43], [44]. In the two-port network, we
only consider multiplicative and inverse multiplicative channel
uncertainties, determined by the “downlink” quantizer

Qδd : v(t) 7→ v1(t), t ∈ [0,∞), satisfying
‖v1 − v‖2
‖v‖2

≤ δd

and the “uplink” quantizer

Q̃δu : w1(t) 7→ w(t), t ∈ [0,∞), satisfying
‖w − w1‖2
‖w‖2

≤ δu.

Additionally, we consider the case when the communication
through the two-port network involves transmission delay [45].
The plant P is thus replaced by the delayed model Pe−2τs

with τ being the time delay for one-way transmission.
Let δd = 0.2, δu = 0.25 and τ = 0.1[sec]. We have

δ1 = max{δd, δu} = 0.25 and δp = δ(P, Pe−2τs) < 0.1141,
estimated by Padé approximation [46]. Hence,

arcsin δ1 + arcsin δp = 0.3671 < 0.3927

= arcsin ‖GoF(P,C)‖−1∞ ,
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Fig. 9: Output evolutions when condition (12) violated.

which satisfies condition (12). It can be shown from the
simulation that the two-port NCS is stable in this case. We
comment that the nonlinear perturbations in the two-port
channel due to quantization and time delay in this specific
example are not the worst case in most situations. In other
words, the stability may be maintained even if condition (12)
is violated. However, the system will eventually turn to be
unstable if the uncertainties are kept increasing. Indeed, when
the parameters of uncertainties increase to δu = 0.5, δd = 0.6
and τ = 0.75[sec],

arcsin δ1 + arcsin δp = 1.067 > 0.3927

= arcsin ‖GoF(P,C)‖−1∞ .

The corresponding output signals fluctuate persistently as time
t→∞, as shown in Fig. 9.

C. Synthesis Example with Frequency-wise Uncertainties

Consider a two-port NCS containing two stages. Assume
that the plant P , and frequency-wise uncertainty bounds W1

and W2 are given respectively by

P (s) =
1

s2
, W1(s) =

50

800 + s
, W2(s) =

0.3s

1200 + s
.

Here, W1 describes two-port uncertainty in the first channel
concentrated on low frequency (|ω| < 800[rad/sec]), and W2

describes uncertainty in the second channel on high frequency
(|ω| > 1200[rad/sec]). The composition of weighting functions
is given by

|W (jω)| = sin

(
arcsin

∣∣∣∣ 50

800 + jω

∣∣∣∣+ arcsin

∣∣∣∣ 0.3jω

1200 + jω

∣∣∣∣) .
We apply Algorithm 1 with sampling number N = 39 and
period Ts = 3.5[msec], and obtain a 2nd order LTI system

Ŵ (s) =
0.2983s2 + 59.18s+ 1673

s2 + 736.4s+ 2.659× 104

as the approximation for W (jω); See Fig. 10 for the magni-
tude Bode plots. Clearly, Ŵ is stable and minimum phase, i.e.,
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Fig. 10: The weighting function W (jω) is approximated by a
2nd order LTI system Ŵ (jω). The magnitudes of W (jω) and
Ŵ (jω) are plotted in the unit of decibel (dB), i.e., 20 log(·).

Ŵ , Ŵ−1 ∈ RH∞. We ignore the phase difference between
the weighting functions as it will not affect the controller
design in terms of (30). Solving the two-block H∞ model
matching problem (31), we obtain a strictly proper 4th order
optimal robust controller

Copt(s) =
−0.1908s3 − 599.4s2 − 2.289× 104s− 8350

s4 + 201.7s3 + 6276s2 + (1.975s+ 2.941)× 104
.

Our numerical calculation results in

‖ŴGoF(P,Copt)‖∞ = 0.3058 < 1.

This shows that the two-port NCS is stabilized by controller
Copt and that inequality (29) is satisfied with a large “stability
margin” 1−0.3058 ≈ 0.7. Therefore, the approximation error
between |Ŵ (jω)| and |W (jω)| (less than 0.3[dB]) can be
compensated by this margin, and the two-port NCS will remain
stable when more uncertainties appear, as long as inequality
(29) remains true. Finally, we would like to mention that the
order of Copt equals to the sum of the orders of P and Ŵ .

VIII. CONCLUSION

An uncertainty model for the NCS with cascaded two-port
connections is proposed and analyzed. The model uncertainties
in the plant and controller are measured by the gap metric.
The communication uncertainties involved in the two-port
networks at the kth stage are measured by the H∞ norm
of uncertainty quartet ∆k ∈ RH∞ for k = 1, 2, . . . , l.
The architecture is applicable to many practical scenarios,
especially those involving noisy communications with the
cascaded structure in the feedback system. A necessary and
sufficient condition for the robust stability of the NCS is
presented, which is determined by an “arcsine” inequality. The
sufficiency is mainly derived from the triangular inequality
of the angular metric. The necessity is mainly attributed to
the tightness of the angular metric and the techniques in
handling the rotations of subspaces. The stability condition

is later generalized to the case where all the uncertainties are
frequency-wise bounded.

Further generalization of the problem setup and the two-port
approach may work if we model the network uncertainties to
be nonlinear time-varying or stochastic processes, motivated
by the practical channel conditions, equipment with quantizer
and attack patterns of potential enemies, such as the simulation
example in Subsection VII-B. Some attempts have been made
recently on extending uncertainty quartets to be nonlinear,
which can be found in [47].
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APPENDIX A
PROOF FOR THEOREM 2

Proof. We first show the sufficiency. Fixing an arbitrary stage
k ∈ [0, l], we show that equivalent closed-loop system [P̃k, C̃k]
is stable, where P̃k and C̃k are given by (9) and (10) with P
replaced by P̃ and C by C̃, respectively. At each frequency
ω ∈ R, there hold the following inequalities:

arcsin

{
σ̄
[
GoF(P̃ , C̃)(jω)

]−1}
≥ arcsin

{
σ̄[GoF(P,C)(jω)]−1

}
− γ

[
G(P )(jω),G(P̃ )(jω)

]
− γ

[
G′(C)(jω),G′(C̃)(jω)

]
≥ arcsin

{
σ̄[GoF(P,C)(jω)]−1

}
− arcsin |Wp(jω)| − arcsin |Wc(jω)|.

The first inequality follows from [8, Theorem 2]. Lemma 4
and the triangular inequality of the angular metric imply that

arcsin γ
[
G(P̃k)(jω),G(P̃ )(jω)

]
≤

k∑
i=1

arcsin |Wi(jω)|,

arcsin γ
[
G′(C̃k)(jω),G′(C̃)(jω)

]
≤

l∑
i=k+1

arcsin |Wi(jω)|.

Again from [8, Theorem 2], we know

arcsin

{
σ̄
[
GoF(P̃k, C̃k)(jω)

]−1}
≥ arcsin

{
σ̄
[
GoF(P̃ , C̃)(jω)

]−1}
−

l∑
k=1

arcsin |Wk(jω)|

≥ arcsin
{
σ̄[GoF(P,C)(jω)]−1

}
− arcsin |Wp(jω)|

− arcsin |Wc(jω)| −
l∑

k=1

arcsin |Wk(jω)| > 0,

where the last inequality follows from condition (27). It
holds that σ̄

[
GoF(P̃k, C̃k)(jω)

]
< ∞ uniformly for every
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ω ∈ R. As a result, GoF(P̃k, C̃k) ∈ L∞. To further show
that GoF(P̃k, C̃k) ∈ H∞, we utilize a continuity argument as
follows.

Replacing ∆k by ∆
[ε]
k := ε∆k for parameter ε ∈ [0, 1]

and k = 1, 2, . . . , l in the two-port NCS, we obtain a series
of new equivalent closed-loop systems

[
P̃

[ε]
k , C̃

[ε]
k

]
. Define

a mapping F (ε) : ε 7→ GoF
(
P̃

[ε]
k , C̃

[ε]
k

)
with ε ∈ [0, 1].

Since 0 ≤ ε ≤ 1, it holds σ̄
[
∆

[ε]
k (jω)

]
≤ σ̄[∆k(jω)] for

every ω ∈ R, and it is clear GoF
(
P̃

[ε]
k , C̃

[ε]
k

)
∈ L∞ by the

same arguments as used earlier. Clearly, F (ε) is a continuous
function of ε under the L∞ norm. In addition, each of the poles
of GoF

(
P̃

[ε]
k , C̃

[ε]
k

)
is a continuous function of ε. For ε = 0,

the hypothesis on δν(P, P̃ ) < 1 and δν(C, C̃) < 1 implies that
F (0) = GoF(P̃ , C̃) ∈ H∞, in light of [12, Theorem 3.17].
Since F (ε) ∈ L∞ for all ε ∈ [0, 1], when ε changes from 0 to
1 continuously, the poles of F (ε) cannot cross the imaginary
axis due to their continuity with respect to ε. We thus conclude
that F (ε) ∈ H∞ for all ε ∈ [0, 1]. In particular, at ε = 1,
F (1) = GoF(P̃k, C̃k) ∈ H∞. An application of the stability
criterion in Lemma 3 validates the stability of the NCS.

In the rest, we prove the necessity using the contrapositive
argument. If condition (27) does not hold, then there exists
some ω̄ ∈ R ∪ {∞} such that

arcsin |Wp(jω̄)|+ arcsin |Wc(jω̄)|+
l∑

k=1

arcsin |Wk(jω̄)|

≥ arcsin
{
σ̄[GoF(P,C)(jω̄)]−1

}
. (33)

From [8, Theorem 2], we know that

min
{

arcsin
{
σ̄[GoF(P̃ , C̃)(jω̄)]−1

}
:

γ
[
G(P )(jω̄),G(P̃ )(jω̄)

]
≤ |Wp(jω̄)|,

γ
[
G′(C)(jω̄),G′(C̃)(jω̄)

]
≤ |Wc(jω̄)|

}
= arcsin

{
σ̄[GoF(P,C)(jω̄)]−1

}
− arcsin |Wp(jω̄)| − arcsin |Wc(jω̄)|

≤
l∑

k=1

arcsin |Wk(jω̄)|.

Without loss of generality, we assume that P̃ ∈ Bν(P,Wp)
and C̃ ∈ Bν(C,Wc) satisfying

arcsin

{
σ̄
[
GoF(P̃ , C̃)(jω̄)

]−1}
=

l∑
k=1

arcsin |Wk(jω̄)|.

Consider the closed-loop system [P̃l, C̃] defined by (9) with
P replaced by P̃ . We will show that there exists ∆̃k ∈ RH∞,
subject to ‖W−1k ∆̃k‖∞ ≤ 1 for k = 1, 2, . . . , l such that
[P̃l, C̃] is unstable.

Noting P̃ ∈ Pp×m and C̃ ∈ Pm×p, we let n = m +
p, and denote subspaces U = G(P̃ )(jω̄) ∈ Gm,n and W =
G′(C̃)(jω̄) ∈ Gp,n. Then from Proposition 1, there exists ∆k ∈
Cn×n satisfying σ̄(∆k) ≤ |Wk(jω̄)| such that

θ [(I + ∆l) · · · (I + ∆1)U ,W] = 0.

In light of Lemma 5, there exists ∆̂k ∈ RH∞ for which
∆̂k(jω̄) = ∆k and ‖∆̂k‖∞ = σ̄(∆k). We next construct

∆̃k(s) =
Wk(s)∆̂k(s)

|Wk(jω̄)|
∈ RH∞, k = 1, 2, . . . , l,

which satisfies that σ̄
[
∆̃k(jω)

]
≤ |Wk(jω)| for all ω ∈ R.

Let P̃l be determined by its graph, i.e.,

GP̃l
=
(
I + ∆̃l

)
· · ·
(
I + ∆̃1

)
GP̃ .

Then it is clear that

σ̄
[
GoF(P̃l, C̃)(jω̄)

]−1
= sin θ [(I + ∆l) · · · (I + ∆1)U ,W] = 0.

As a result, it holds ‖GoF(P̃l, C̃)‖∞ = ∞, i.e., closed-loop
system [P̃l, C̃] is unstable, and so is the two-port NCS.
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