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Abstract— We advocate and motivate in this paper a general
framework for studying dynamical networks with both node
(agent) and edge (communication) dynamics. Specifically, the
agents interact with each other via transfer incident systems
and dynamical communication channels. The potential of using
the proposed framework to model network problems and
architectures is demonstrated by a concrete example. The
framework facilitates the study of stability and performance
of various network dynamics. An application to angle stability
of electrical power networks involving locally positive feedbacks
is discussed as an illustrating example.

I. INTRODUCTION

Networks are ubiquitous in daily life. Examples include
social networks [1], biological networks [2], data networks
[3], power networks [4], and transportation networks [5].
The analysis and manipulation of such networks has started
during the last century and attracted researchers from various
fields. During the past decades, efforts have been devoted to
studying dynamical networks, including opinion dynamics
in social networks [6], structure controllability and observ-
ability of complex networks [7], and stability analysis in
electrical power networks [8].

In earlier studies of dynamical networks, the nodes are
modeled as dynamical systems while the edges are often
modeled as static weights. Such a simplification to static
weights brings in considerable technical convenience. How-
ever, considering dynamical nodes but static edges appears to
be a practice that foregoes half of the dynamical modelling
capabilities at our disposal. It is rather desirable and rea-
sonable to assign equal dynamical importance to the nodes
and edges, and study networks with both node and edge
dynamics. As a matter of fact, nodes and edges have a duality
relationship and their roles can even be interchanged in some
contexts [9]. Furthermore, numerous problems commonly
examined in the literature naturally involve networks with
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edge dynamics. The signal flow graph [10] is one such ex-
ample, which is a tool widely used in electronics engineering.
Another example is communication networks, where signals
are transmitted through communication channels that are
inherently dynamical.

More research works on dynamical networks with both
node and edge dynamics have emerged recently, signifying
their growing importance. For instance, Nepusz and Vicsek
[11] studied the controllability of edge dynamics by con-
sidering that of node dynamics on line graphs. Pates [12]
derived robust, decentralised, and scalable stability criteria
for networks of heterogeneous systems. Khong et al. [13],
[14] investigated robust synchronisation of heterogeneous
agents with dynamical interconnections. Bürger et al. [15]
introduced a cooperative control framework involving refined
passive systems for network analysis and optimal design.

This paper is driven by the motivation that edge dynamics
are of essential importance in the study of dynamical net-
works. Building upon [15], we establish a general framework
for studying dynamical networks with both node and edge
dynamics. Specifically, the agents interact with each other
via transfer incident systems and dynamical communication
channels. The potential of using the proposed framework to
model network problems and architectures is demonstrated
by a concrete example. The framework facilitates the study
of stability and performance of various network dynamics.
An application to angle stability of electrical power networks
involving locally positive feedbacks is discussed.

Notation: We denote by A′ the transpose of a matrix A.
We use 1 to denote the vector with all entries equal to 1,
while the size of the vector is to be understood from the
context. The symbol diag denotes the diagonal operation.

The rest of the paper is organized as follows. Section II
introduces a general dynamical network framework with
both node and edge dynamics. Section III provides some
preliminary knowledge. One specific example of networks
that fit within our framework is illustrated in Section IV.
One specific engineering application is studied in Section V.
Some concluding remarks follow in Section VI.

II. PROBLEM FORMULATION

A general dynamical network is depicted in Fig. 1. In this
framework,

P = diag{P1, P2, . . . , Pn},
W = diag{W1,W2, . . . ,Wm},

where Pi is a scalar transfer function representing the
dynamics of agent i, and Wk is a scalar transfer function



representing the dynamics of edge ek. The concatenated
output of all the agents y(t) =

[
y1(t) y2(t) . . . yn(t)

]′
is transmitted to the edges through the transfer incident
system T , which determines the information available to each
edge. Analogously, the output of the dynamical edges z(t) =[
z1(t) z2(t) . . . zm(t)

]′
provides feedback information

to the agents. The transfer incident system R determines
how the outputs of edges are aggregated and fed back to
the agents. The structures of the transfer incident pairs T
and R reflect the network topology. Together with W , they
form the network dynamics K.
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Fig. 1. Block diagram of a dynamical network

While this framework is closely related to that in [15],
it comes with some major differences. In particular, locally
positive feedback is allowed in the edge dynamics here.
Moreover, we formulate T (R, respectively) as a dynam-
ical system and it may represent an encoder (a decoder,
respectively) in a communication network. In [15], T and
R specialize to the incidence matrix of an undirected graph.

Note that this framework can be generalized to the case
when P is a full transfer matrix, meaning that the agents are
physically coupled. Nevertheless, we consider only decou-
pled agents in this paper. In Section IV, the formulation of
one specific network that fits within this framework will be
presented. Some preliminary knowledge is first provided in
the next section.

III. PRELIMINARIES

A. Graph theory

A graph G = (V, E) consists of a set of nodes V =
{1, 2, . . . , n} and a set of edges E = {e1, e2, . . . , em}. A
dynamically weighted graph is a graph in which each edge
ek = (i, j) ∈ E is associated with a dynamical weight Wk,
where Wk is a scalar transfer function. A static graph can be
viewed as a special case, where Wk is a real-valued number.
A graph is undirected if (i, j) ∈ E implies (j, i) ∈ E .

Let W = diag{W1,W2, . . . ,Wm} denote the dynamical
weight matrix. Node i (j, respectively) is the head node
(tail node, respectively) of the edge ek if ek = (i, j). The

incidence matrix E ∈ Rn×m is defined as:

[E]ik =


1, if i is the head node of ek,
−1, if i is the tail node of ek,
0, otherwise.

If a graph is undirected, we can assign an arbitrary direction
to each edge and get the incidence matrix similarly. An
important property of the incidence matrix is E′1 = 0.
Replacing all the 1’s (−1’s, respectively) in E by 0’s yields
the head incidence matrix H (tail incidence matrix F ,
respectively).

Now, with the dynamical weight matrix W , the incidence
matrix E, and the head incidence matrix H defined above,
the dynamical Laplacian L for directed graphs can be defined
as

L = HWE′

and that for undirected graphs it can be defined as

L = EWE′.

Note that L is a transfer function matrix and L(jω) has a
zero eigenvalue corresponding to an eigenvector 1 for all
ω≥0. In the case when all the edges have constant positive
weights, L reduces to the conventional Laplacian matrix, to
which a substantial literature has been dedicated [16].

B. Passivity

Consider a linear time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,

y(t) = Cx(t) +Du(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rl, and y(t) ∈ Rp. The corre-
sponding transfer function representation of the system (1)
is given by

G(s) = C(sI −A)−1B +D. (2)

Definition 1 ([17]): An n × n proper rational transfer
function matrix G(s) is called positive real if

(i) poles of all elements of G(s) are in Re(s) ≤ 0,
(ii) for all ω ≥ 0 for which jω is not a pole of any

element of G(s), the matrix G(jω)+G∗(jω) is positive
semidefinite, and

(iii) any pure imaginary pole jω of any element of G(s)
is a simple pole and the residue matrix lims→jω(s −
jω)G(s) is Hermitian and positive semidefinite.

The transfer function G(s) is called strictly positive real if
G(s− ε) is positive real for some ε > 0.

With the definition of positive realness as above, the
passive systems can be defined as follows:

Definition 2 ([18]): An LTI system of the form (1) is
passive (strictly passive, respectively) if and only if its
transfer function G(s) given by (2) is positive real (strictly
positive real, respectively).

We also need the notion of passive matrices as below.



Definition 3: A matrix A ∈ Rn×n is said to be passive
(strictly passive, respectively) if x′Ax ≥ 0 (x′Ax > 0,
respectively) for all x ∈ Rn and x 6= 0.

Note that a symmetric passive (strictly passive, respec-
tively) matrix A is also called positive semidefinite (positive
definite, respectively).

Passive systems enjoy many useful properties. We list two
of them below for further use. For more details, the readers
may refer to [19], [20].

Lemma 1 ([19, Theorem 2.33]): Consider two systems
G1 and G2 in a negative feedback configuration, as shown
in Fig. 2. The closed-loop system is passive if G1 and G2

are passive.
Lemma 2 ([19, Proposition 2.47]): Consider two systems

G1 and G2 in a negative feedback configuration, as shown
in Fig. 2. The closed-loop system is asymptotically stable if
G1 is passive and G2 is strictly passive.
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Fig. 2. Feedback configuration

IV. AN EXAMPLE

A signal flow graph, also called Mason graph [10], is a
network of directed branches which connect at certain nodes.
The nodes represent system variables, and the branches
represent functional connections between pairs of nodes. See
Fig. 3 for a simple example. A signal flow graph can be
interpreted as a signal transmission system in which each
node stands for a tiny station. The station receives signals via
the incoming branches, aggregates the information in some
manner, and then transmits the result along each outgoing
branch.

g - g - g - g - g
- -

� �

1 2 3 4 5

G1 G2 G3 G4

G5 G6

G7 G8

Fig. 3. A simple signal flow graph

A signal flow graph can be formulated within the frame-
work proposed in Section II. Consider a signal flow graph
with n nodes and m branches. Each branch is associated
with a scalar transfer function Gk describing its dynamics.
As shown in Fig. 4, for such a signal flow graph, the input-
output relation of node i is simply a unity transfer function,
i.e.,

yi(s) = Piui(s) = ui(s).

The dynamics of edge ek takes the following form:

zk(s) = Gkvk(s).

The transfer incident systems reduce to the graph tail in-
cidence matrix and transpose of the head incidence matrix,
i.e.,

R = F and T = H ′,

implying that each edge takes the measurement of its head
node as the input and injects the output to its tail node.
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Fig. 4. Block diagram of signal flow graphs

V. AN APPLICATION

In the previous sections, we have built a general frame-
work for studying dynamical networks and shown a specific
example that can be fitted into the framework. Certain
questions then arise naturally: What can we further do with
this framework? What problems can we formulate and study?
What advantages does this framework provide in network
analysis and design?

We envision that this framework will greatly facilitate
the study of stability and performance of various network
dynamics. As a case in point, we examine, in this section,
an application to angle stability of power systems.

Small disturbance angle stability is a fundamental issue in
electrical power systems. Here we study it within the pro-
posed framework. For detailed discussions of this problem,
we refer the readers to [8], [21], [22].

Consider a power network whose topology is described by
an undirected graph G = (V, E). Each node corresponds to a
bus and each edge a transmission line. Denote by Yij = Yji
the admittance of the transmission line (i, j) ∈ E . Denote
the voltage magnitude and phase angle of bus i by Vi and
θi, respectively.

The dynamics of phase angle θi at bus i is described as

miθ̈i + diθ̇i = pi −
∑

(i,j)∈E

ViVjYij sin(θi − θj), i ∈ V. (3)

In traditional synchronous machine based power networks,
mi > 0 and di > 0 are, respectively, the moment of inertia



and the damping constant of the ith synchronous generator.
When mi =0, the dynamics correspond to the inverter-based
droop-controlled generators in a microgrid, where di> 0 is
the reciprocal of frequency droop gain of the ith generator.
In both cases, pi is the nominal active power generation
minus the electrical load at bus i. For technical simplicity,
we consider the case when the voltage magnitude at each
bus is a constant (not necessarily homogenous).

Denote by (θ0, 0) an equilibrium point of system (3).
We wish to examine the small-disturbance stability of the
equilibrium point (θ0, 0). To this end, we linearize the
system (3) around (θ0, 0) and get

mi∆θ̈i+di∆θ̇i =pi−
∑

(i,j)∈E

ViVjYij cos (θ0i − θ0j )(∆θi−∆θj).

This linearized power network dynamics can be put into
our dynamical network framework, where the node dynamics
are

Pi =
1

mis2 + dis
,

and the edge dynamics Wk are static weights

Wk = ViVjYij cos (θ0i − θ0j ).

Since the power network is undirected, the transfer incident
systems R and T reduce to the incidence matrix E of the
network, i.e., T = E and R = E. Consequently, the whole
network dynamics K is simply the Laplacian L = EWE′

of the network, as shown in Fig. 5.
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Fig. 5. Block diagram for studying the angle stability of a power system

Note that if for some ek = (i, j) ∈ E , the angle difference
between θ0i and θ0j is larger than π/2, Wk will be negative,
which corresponds to a positive feedback. Nevertheless, the
following theorem shows that an equilibrium point can be
small-disturbance stable even when some positive feedbacks
exist, provided that L is positive semidefinite and has a
simple zero eigenvalue.

Theorem 1: An equilibrium point (θ0, 0) of (3) is small-
disturbance stable if L is positive semidefinite and has a
simple zero eigenvalue.

Proof: Consider a first-order system

diθ̇i = pi −
∑

(i,j)∈E

ViVjYij sin(θi − θj), i ∈ V, (4)

i.e., let mi be zero in the system (3). It has been shown
in [23, Theorem 5-1] that (θ0, 0) is an equilibrium point of
the system (3) if, and only if, θ0 is an equilibrium point
of the system (4). Furthermore, (θ0, 0) of the system (3) is
small disturbance stable if, and only if, θ0 of the system (4)
is small disturbance stable. Therefore, it suffices to analyze
the small disturbance stability of θ0 of the system (4). To
this end, we linearize the system (4) around θ0 and get

di∆θ̇i =pi −
∑

(i,j)∈E

ViVjYij cos (θ0i − θ0j )(∆θi −∆θj).

These dynamics can be put into our framework. Then, the
node dynamics are given by

P̂i =
1

dis
,

which are passive. The edge dynamics are still static weights

Wk = ViVjYij cos (θ0i − θ0j ),

and the network dynamics are still the Laplacian matrix L =
EWE′ of the network.

Let Q ∈ R(n−1)×n be a matrix whose rows form an
orthonormal basis for span{1}⊥. Define P̄ = QP̂Q′ and
L̄ = QLQ′. Then, L̄ is strictly passive if, and only if, L is
passive with a simple zero eigenvalue. It has been widely
recognized that the equilibrium point θ0 of the system (4) is
small disturbance stable if, and only if, the negative feedback
connection of P̄ and L̄ is stable [8]. Then, the results follow
from Lemma 2.

VI. CONCLUSIONS

In this paper, we have established a general framework
for studying dynamical networks with both node and edge
dynamics. The potential of using the proposed framework to
model network problems and architectures has been demon-
strated by a concrete example. The framework facilitates
the study of stability and performance of various network
dynamics. An application to angle stability of electrical
power networks involving locally positive feedbacks has also
been discussed.

In fact, the consensus problem in multi-agent systems can
be formulated within our framework. Using the framework,
a sufficient condition can be derived under which a group of
heterogenous agents can reach consensus when they interact
via dynamical communication channels. One can find the
discussions on consensus problem in the longer version of
the paper available from the authors.

We regard the framework considered in this paper as a
starting point for studying the stability and performance of



dynamical networks. We intend to explore more applications
of this framework and investigate other network properties
using this framework in the future.
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