
Multi-leader Selection in Complex Networks

Dan Wang, Wei Chen, and Li Qiu

Abstract— In this paper, we study the multi-leader selection
problem in complex networks. While selecting a single leader
can be done via various centrality measures, selecting multiple
leaders is much more involved than a simple order of the
nodes in terms of centrality measures. In many situations, it
is often desirable to see that the multiple leaders selected are
as representative as possible. Motivated by this, a clustering
based two-step approach is proposed in this paper. Specifically,
in order to select k leaders in a complex network, we first
partition the network into k clusters and then find a leader
within each cluster. For network partitioning, we propose
a hierarchical algorithm by exploiting the properties of the
Fiedler vector. For the single leader selection in each cluster, we
resort to the eigenvector centrality, the closeness centrality and
the effective resistance as useful tools. Examples on several real-
world networks are worked out to illustrate the effectiveness
of our method.

I. INTRODUCTION

Large-scale networked systems are becoming ubiquitous.
Examples include social networks [1], biological networks
[2], data networks [3], power networks [4], [5], distributed
control systems [6], and transportation networks [7]. Efficient
manipulation and control of such networked systems is of
central importance in various research fields. A fundamental
issue arising in different applications is the leader selection
in such networks. In social networks, selecting leaders fa-
cilitates the study of behavior influence in the network. In
biological networks, recognising vital proteins in protein-
protein interaction networks helps biologists to study the
cellular modules or even find ways to cure diseases. In power
networks, identifying the most vulnerable nodes enhances
the security of the grid and placing the phasor measurement
units (PMUs) in proper positions improves the estimation
performance. In distributed control systems, deploying the
controllers in a desired way enhances the control perfor-
mance.

Many studies on single leader selection have been reported
during past decades, e.g., [8], [9]. A natural method for single
leader selection in a network is to order the nodes via a
certain centrality measure and then choose the top-ranked
node as the leader. Now if one wishes to select k leaders from
the network, a simple analogy would be to order the nodes
and then choose the top k forerunners. However, this may not
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be a wise strategy in many applications since the top-ranked
nodes may contain similar or even identical information. For
instance, in social networks, the most influential members
may come from a small community and, thus, do not serve
as a good representation of the whole network. For the PMU
placement in power networks, the top-ranked nodes may
produce highly correlated measurements and, thus, may not
be a good choice for estimation purposes.

As noted above, multi-leader selection is not a simple
inheritance of single leader selection; more factors need to
be taken into consideration. In particular, we are driven by
the idea that in many applications, it is desirable to have
the selected leaders spread across the network such that
they can contain complementary information. For instance,
in social networks, one may wish to see leaders elected from
different communities to have more diverse voices. In power
networks, one may wish to place the PMUs widely spread
over the network so as to have better estimation performance.
In Internet networks, one may wish to select webpages that
contain important information on different topics rather than
those on a single hot topic.

Inspired by this idea, we propose a clustering based two-
step approach for multi-leader selection. To be specific, we
first partition the network into different clusters and then se-
lect a leader within each cluster. For network partitioning, we
propose a hierarchical algorithm by exploiting the properties
of the Fiedler vector. For the single leader selection in each
cluster, we resort to the eigenvector centrality, the closeness
centrality and the effective resistance as useful tools. We
apply our approach to several real-world networks to verify
its effectiveness.

The rest of this paper is organized as follows. Section II
gives some preliminary knowledge on spectral graph theory
and effective resistance. Section III presents in detail the pro-
posed clustering-based multi-leader selection. The proposed
approach is then applied to several real-world networks in
Section IV. Some concluding remarks follow in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Spectral graph theory

Consider an undirected graph G = (V, E , A), where V =
{1, 2, . . . , n} denotes the node set, E ⊆ V × V denotes the
edge set, and A = [aij ] ∈ Rn×n denotes the nonnegative
weighted adjacency matrix. An edge (i, j) ∈ E if and only
if aij > 0. Self-loops and multiple edges are not considered.
A sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) with
(ij , ij+1) ∈ E for all j ∈ {1, . . . , k−1} is called a path
from node i1 to node ik. Let M be a subset of V . The
induced subgraph G(M) is a subgraph whose node set is



M and whose edge set consists of all the edges in E with
both endpoints in M. Define the degree of node i as

di =

n∑
j=1

aij .

Denote the degree matrix of G by

D = diag{d1, d2, . . . , dn}.

The Laplacian matrix L of G is defined as

L = D −A.
The Laplacian L is positive semidefinite and has a zero

eigenvalue with a corresponding eigenvector being 1 ∈ Rn,
where 1 denotes the vector with all elements equal to 1
[10]. Suppose n ≥ 2. Denote the eigenvalues of L by
0 = λ1 ≤ λ2 ≤ · · · ≤ λn and the chosen orthogonal
eigenvectors by x1, x2, . . . , xn, respectively. The second
smallest eigenvalue λ2 is called the algebraic connectivity
[11] and any corresponding eigenvector x2 is called a Fiedler
vector of the graph [13].

The following lemma shows that the algebraic connectivity
is monotonically increasing with the edge weights.

Lemma 1 ( [12]): Given two graphs G1 = (V, E1, A1)
and G2 = (V, E2, A2). Denote by L1 and L2 the Laplacians
of G1 and G2, respectively. If A1 ≤ A2 holds elementwise,
then λ2(L1) ≤ λ2(L2).

We also state a useful property of the Fiedler vector x2.
Define the following subsets:

M≥0 = {i ∈ V |x2i ≥ 0},
M≤0 = {i ∈ V |x2i ≤ 0},
M>0 = {i ∈ V |x2i > 0},
M<0 = {i ∈ V |x2i < 0},

where x2i means the ith element of x2.
Lemma 2 ( [13]): If G is connected, then both induced

subgraphs G(M≥0) and G(M≤0) are connected. Further-
more, if {i ∈ V |x2i = 0} = ∅, then the induced subgraphs
G(M>0) and G(M<0) are connected.

B. Effective resistance

Consider a connected graph G = (V, E , A). Place a resistor
to each edge with resistance equal to the reciprocal of the
edge weight. Then a resistive electrical network associated
with the graph G is obtained. Suppose a unit of current is
injected into one node i and extracted from another node
j. Then the voltage difference between node i and node j
can be calculated by using basic circuit theory [15]. This
quantity is called the effective resistance between node i and
node j [16]. The notion of effective resistance has many
applications over a wide variety of fields [17], [18], and has
recently attracted much attention from the system and control
community [19].

The effective resistance can be computed via the Moore-
Penrose pseudoinverse L† = [l†ij ] of the Laplacian L. Let
uk ∈ Rn denote the vector whose kth element is 1 and

all the other elements are 0. Then the effective resistance
between nodes i and j can be calculated by [16]

rij = (ui − uj)TL†(ui − uj) = l†ii − 2l†ij + l†jj .

Since L† is symmetric, we have rij = rji. A property of
the effective resistance is stated as below, which will play
an important role in our algorithm for leader selection.

Lemma 3 ( [16]): The effective resistance gives a dis-
tance function in V of G.

III. IDENTIFICATION OF LEADERS IN A NETWORK

We study the multi-leader selection problem in this paper.
One main motivation of this work comes from applications
aiming to maximize the influence on a network with limited
resources. For example, deploying limited number of con-
trollers in a distributed control system. Therefore, we assume
the number of leaders is given. We are aware that in some
literature, the number of leaders is also left as a decision
variable, due to the nature of the applications. However, that
kind of setup is out of the scope of this study.

Given a graph G = (V, E , A), we wish to find k leaders
as a good representation of the whole graph. As reasoned
before, multi-leader selection is much more involved than
a simple inheritance of single leader selection. Ranking the
nodes via a certain centrality measure and selecting the first
k forerunners may not be a good choice in many contexts,
especially when diversity is of essential importance. Take
the ten-node path shown in Fig. 1 as an example. The nodes
5 and 6 are top-ranked nodes by the closeness centrality,
which will be formally introduced later. If controllers are
deployed in these two nodes in a distributed control system,
their coverage is limited and thus the operation on node 1
and node 10 might be very weak, which is not desirable
for control purposes. In power networks, if two PMUs are
placed on nodes 5 and 6, we may lose the measurements of
nodes 1 and 10. In both scenarios, node 3 and 8 serve as
better choices of leaders, as shown in Fig. 2. In fact, these
two nodes are picked out by our algorithm, which will be
introduced bellow.

1 3 42 5 7 86 9 10

Fig. 1. Two leaders by ranking

1 3 42 5 7 86 9 10

Fig. 2. Two leaders by our algorithm

Before formally introducing the algorithm, let us first look
into an extreme case for some intuitions. Suppose the graph
G is disconnected and can be decomposed into k connected
subgraphs. In this case, to select k leaders in the network,
it appears quite reasonable to choose a leader from each
subgraph. In this way, each leader selected contains the
information of the subgraph to which it belongs. Hence, these
leaders serve as a good representation of the whole graph.



Inspired by this intuition, for a given graph G, connected
or not, we propose a clustering based two-step approach to
find k leaders in the graph, i.e., partitioning the network into
k clusters and then selecting a leader within each cluster.

A. Network partitioning

We propose a hierarchical algorithm to partition the graph
G into k clusters, namely, to partition the node set V into k
distinct subsets.

Firstly, bipartition G into two clusters C1 and C2 according
to the sign pattern of the Fiedler vector of G. Specifically,
the nodes corresponding to the nonnegative entries in the
Fiedler vector are put in one cluster and the others are put in
another cluster. The underlying rationale is due to the nice
property of Fiedler vector stated in Lemma 2. Since the nodes
corresponding to the zero entries in the Fiedler vector are
boundaries of two clusters, they will not be chosen as leaders.
So they can be put together with the nodes corresponding to
positive or negative entries in the Fiedler vector. In fact, it
has been pointed out in the literature that such bipartition
via the Fiedler vector has the effect of maximizing the sum
of weights of intra-cluster edges and minimizing the sum of
weights of inter-cluster edges. Notice that such bipartition
relies on the simplicity of λ2 such that the Fiedler vector is
unique (up to multiplication by scalars). If unfavorably, λ2
is not simple, one can slightly perturb the Laplacian to avoid
the trouble from the nonuniqueness of the Fiedler vector.

To go from two clusters to k clusters, we use a hierarchical
approach by recursively implementing the above bipartition
method. Suppose at some point in the process, l clusters are
already in place. We then choose one cluster and bipartition
it into two subclusters. Keep repeating this process until k
clusters are formed. The key issue in this process is to decide
which cluster to choose for further bipartition. To this end,
we appeal to the algebraic connectivity as a useful tool. From
Lemma 1, we know that the algebraic connectivity λ2 reflects
the degree of connectivity of a graph. The smaller λ2 is, the
sparser a graph is and the more likely it has a clustering
structure. In order to compare two graphs with possible
different sizes, the normalized algebraic connectivity λ2/n
is used instead of λ2. Hence, in every step of the recursive
bipartition, we choose the cluster whose induced subgraph
has the smallest normalized algebraic connectivity for further
bipartition.

The hierarchical partition introduced above is summarized
in Algorithm 1.

We are aware that there are various algorithms for network
clustering in the literature, including the well known spectral
clustering algorithms [20]. See Algorithm 2 for the details
of the spectral clustering method proposed in [22]. An issue
worth attention is that the spectral clustering algorithm is
sensitive to the choice of initial conditions due to the use of
k-means [21] algorithm. We illustrate this point by a simple
example of partitioning a twenty-node cycle graph to two
clusters. As shown in Fig. 3, spectral clustering may produce
two clusters with 9 nodes and 11 nodes, respectively, if the
initial condition is not chosen carefully. This contradicts the

Algorithm 1 Hierarchical clustering algorithm
Input: A: the adjacency matrix, k: the number of clusters.

1: Compute the Laplacian matrix L and a corresponding
Fiedler vector x2.

2: Partition the nodes of the graph into two clusters: C1 =
M≥0 and C2 =M<0.

3: Calculate λ2/n of the present clusters. Find the cluster
whose induced subgraph has the smallest normalized
algebraic connectivity for continuing partitioning.

4: Repeat from step 1 until the number of clusters increases
to k.

Output:
C1, . . . , Ck: k clusters.

intuition that the highly symmetrical cycle graph should be
cut along any diameter so that the resultant two clusters have
equal number of nodes. Nevertheless, our algorithm adopts
a recursive bipartition approach based on the sign patten of
the Fiedler vector and, thus, does not have the concern about
the initial conditions. With our algorithm, the cycle graph is
indeed cut along a diameter.

Algorithm 2 Normalized spectral clustering [22]
Input: A: the adjacency matrix, k: the number of clusters.

1: Compute the degree matrix D and the normalized Lapla-
cian matrix Ln = D−

1
2 (D −A)D− 1

2 .
2: Let U =

[
x1 x2 · · · xk

]
, where x1, . . . , xk are the

first k eigenvectors of Ln. Normalize each row of U
(with the Hölder 2-norm) to get Un.

3: Let yj ∈ Rk (j = 1, . . . , n) be the jth row of Un.
4: Cluster yj in Rk into k clusters C1, . . . , Ck using the
k-means algorithm.

Output:
C1, . . . , Ck: k clusters.
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Fig. 3. Partition of a cycle graph by spectral clustering.

B. Single leader selection in a network

After partitioning a network into k clusters, we shall find
a leader within each cluster. We provide three methods to
select the leader.

1) Leader selection by the eigenvector centrality: Eigen-
vector centrality is a measure of the influence of the nodes
in a network G = (V, E , A) [23]. The basic idea comes from
the perception that a node connected to important nodes is
also important. In this regard, the centrality of a node can be



evaluated as a weighted sum of the centralities of the nodes
connected to it. Formally, if we denote the centrality of node
i by pi, then

pi =
1

λ

n∑
j=1

aijpj ,

where λ is a constant. Denote the centrality vector by p =[
p1 p2 . . . pn

]′
. The above equation can be rewritten in

matrix form as
λp = Ap.

Clearly, λ is an eigenvalue of A and p is a corresponding
eigenvector. It is customary to choose λ to be the eigenvalue
of A with the largest magnitude. By the Perron-Frobenius
theorem [14], there exists a corresponding eigenvector p
having all nonnegative entries, which is referred to as Perron
vector. We rank all nodes in a graph according to the entries
of the Perron vector of the adjacency matrix A and then
select the top-ranked node as the leader. See Algorithm 3.

Algorithm 3 Single leader selection via PerronRank
Input: A: the adjacency matrix.

1: Compute the Perron vector p of A.
2: Find the leader corresponding to the largest entry of p.

Output:
The leader.

2) Leader selection by the closeness centrality: The close-
ness centrality gives another useful tool for leader selection,
especially in applications where quick spread of information
is crucial. Define the length of a path to be the sum of the
reciprocals of the weights of the traversed edges1. Among all
paths between two nodes, the shortest path is the one with
the minimum length. The distance between node i and node
j, denoted by dij , is defined to be the length of the shortest
path between them. The closeness centrality [24] of a node
is then defined as the reciprocal of the sum of its distances
to all other nodes.

The node with highest closeness centrality is selected to
be the leader. This means that the leader has the smallest
sum of distances to the other nodes. Mathematically, it boils
down to the following optimization problem:

min
i=1,2,...,n

∑
j

dij . (1)

Algorithm 4 Single leader selection via closeness centrality
Input: G: a connected graph.

1: Compute the distance matrix D = [dij ].
2: Solve the optimization problem (1).

Output:
The leader.

1This is different from the conventional definition that simply takes the
sum of the weights of the traversed edges to be the length of a path. The
rationale for taking the reciprocals of the weights comes from the intuition
that large weight indicates strong bonding in many applications.

3) Leader selection by the effective resistance: As stated
in Lemma 3, the effective resistance gives a distance function
in the node set of a graph. It quantitatively measures the
bonding between two nodes by taking all the paths between
them into account. The smaller the effective resistance is, the
more bonding two nodes are. In this regard, a leader can be
selected via the effective resistance.

Specifically, denote by R = [rij ] the effective resistance
matrix of a graph G = (V, E , A), where rij is the effective
resistance between node i and j. Denote Ri as the ith row of
R. Then finding a leader in the network can be formulated
as the following optimization problem:

min
i=1,2,...,n

‖Ri‖, (2)

where ‖·‖ takes Hölder p-norm. The choice of norm depends
on the specific context. For instance, if ‖ · ‖1 is used, the
node having the smallest sum of effective resistance with
other nodes is selected. If ‖ · ‖∞ is used instead, then the
node having the smallest maximum effective resistance with
other nodes is selected.

The detailed algorithm is presented below.

Algorithm 5 Single leader selection via effective resistance
Input: G: a connected graph.

1: Compute the effective resistance matrix R = [rij ].
2: Solve the optimization problem (2).

Output:
The leader.

C. Computational complexity

In the two-step approach, for the network partitioning, we
resort to the algebraic connectivity and Fiedler vector of the
network Laplacian. Only λ2 and x2 need to be calculated,
which can be efficiently done by distributed methods such
as the Jacobi-Davidson method [25]. It is often the case that
each cluster is of small size after network partitioning. The
centrality measure can then be computed easily. In the case
when the cluster size is relatively big, distributed approaches
can be used to calculate the centralities as in the literature, for
instance, [26]. Therefore, our method works efficiently for
large-scale networks. Examples are depicted in next section.

IV. EXPERIMENTAL RESULTS

We apply our algorithm to several real-world networks. In
each case, our algorithm reliably identifies the leaders.

A. Zachary’s karate club network

We first illustrate our method by identifying the influential
persons in a benchmark social network: Zachary’s Karate
Club [27]. It consists of 34 nodes, the members of a karate
club, who were observed over a period of three years. The
edges in the network represent the interactions among the
members outside the activities of the club. During the course
of the study, a disagreement developed between the president
and the instructor of the club, which ultimately resulted in the
fission of the club into two separate groups, one in support



of the instructor and one in support of the president. Here
we use a weighted version of Zachary’s network and apply
our algorithm to it.
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Fig. 4. Two leaders in Zachary’s karate club

As shown in Fig. 4, the nodes depicted by squares belong
to one cluster and the nodes depicted by circles belong to
another cluster. Node 1 and node 34 are the leaders we found
(by all three methods we mentioned). The partition consists
with the actual division of the club members after the break-
up, as revealed by which club they attended afterwards. The
two leaders are indeed the key members of the club as they
correspond to the president and the instructor.

In this experiment as well as the later ones, when using the
effective resistance to identify the leader within each cluster,
we adopt Hölder 1-norm in the optimization problem (2).

B. IEEE 30-bus system
We now turn to applying our algorithm to the placement

of PMUs in the IEEE 30-bus system [4]. Fig. 5 shows the
simple transmission grid model of the system. Each bus
denoted by a horizontal or vertical bar represents a power
plant, a substation, or a load. The buses are connected by
transmission lines, forming a power network. We express
the topology of the grid as an undirected graph. Each node
in the graph corresponds to a bus in the grid, and edges
connecting the nodes correspond to the transmission lines.
We would like to install 9 PMUs in the grid, which ensure
observability of the full system [28]. The graph partitioning
result is shown in Table I and the positions for PMUs to be
placed are shown in Fig. 5.

It is interesting to see that the single leader selection within
each cluster by all three methods coincide. This is partially
because each cluster contains no more than five nodes and
the induced graph is simple, i.e., a cycle or a tree. In general,
we do not expect the results yielded by the three methods to
coincide.

The positions we find to place PMUs are highly consistent
with the results in [28]. Only two positions, 6 and 23, are
selected differently.

TABLE I
CLUSTERS OF THE IEEE 30-BUS SYSTEM

Clusters of the network {1 2 3 4}, {5 7}, {6 10 21},
{8 28}, {12 13 14 15 23},
{9 11}, {16 17}, {18 19 20},
{22 24 25 26}, {27 29 30}.

C. Co-publishing Network (DBLP)

We also apply our algorithm to real-world large-scale
networks to illustrate the effectiveness. We choose the DBLP
collaboration network [29] from the Stanford Large Network
Dataset Collection, which has ground-truth communities.

The DBLP provides a comprehensive list of research
papers in computer science. A co-authorship network is
constructed, where nodes represent authors and adjacent
nodes represent authors with at least one shared publication.
Ground-truth communities are defined as sets of authors who
have published in the same journal or conference publication.

We choose a subgraph which contains the top 1000
ground-truth communities from the network for evaluation.
This subgraph contains 9715 nodes and 31860 edges. Our
algorithm is used to find 1000 leaders. We regard each con-
nected component in the network as a cluster, and implement
our hierarchical algorithm to get 1000 clusters. Then we find
the single leader in each cluster with the three approaches
presented in last section.

A local perspective of the results is shown in Fig. 6. In
the figure, an empty circle represents a node of the network,
nodes within each large red circle are in the same cluster, and
red, yellow and blue nodes in each cluster are leaders given
by eigenvector centrality, closeness centrality and effective
resistance, respectively. Only a red node is shown if they
coincide. The results for the whole network are left out
because of page limitations, and can be found from authors.

We choose one measure method in the field of commu-
nity detection to compare our partitioning results with the
ground-truth communities. We calculate the correlation of
the similarity matrices of the ground-truth community and
the resultant cluster to measure the cluster validity [30]. The
correlation is 0.6251, which means that our results are highly
consistent with the real community structures.

Fig. 6. A local sample of leaders in DBLP



Fig. 5. IEEE 30-bus system with 9 PMUs placed

V. CONCLUSIONS

In this paper, we propose a method for multi-leader selec-
tion in networks of various kinds via a clustering based two-
step approach. Specifically, to find k leaders in a network,
we first partition the network into k clusters and then find
a leader within each cluster. For the network partitioning, a
hierarchical algorithm is proposed via a recursive implemen-
tation of bipartition. As for the leader selection in each clus-
ter, three methods based on eigenvector centrality, closeness
centrality, and effective resistance are used respectively. The
proposed algorithm is applied to several real-world networks
to illustrate its effectiveness.
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