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Abstract

In this paper, we define the phases of a complex sectorial matrix to be its
canonical angles, which are uniquely determined from a sectorial decomposition
of the matrix. Various properties of matrix phases are studied, including those
of compressions, Schur complements, matrix products, and sums. In particular,
by exploiting a notion known as the compound numerical range, we establish
a majorization relation between the phases of the eigenvalues of AB and the
phases of A and B. This is then applied to investigate the rank of I + AB
with phase information of A and B, which plays a crucial role in feedback
stability analysis. A pair of problems: banded sectorial matrix completion and
decomposition is studied. The phases of the Kronecker and Hadamard products
are also discussed.
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1. Introduction

A nonzero complex scalar c can be represented in the polar form as

c = σeiφ,

where σ > 0 is called the modulus or the magnitude and φ the argument or the
phase. That is,

σ = |c| and φ = ∠c.

To be more specific, the phase φ takes values in a half open 2π-interval, typically
[0, 2π) or (−π, π]. If c = 0, the phase ∠c is undefined.
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The magnitude and phase are invariant under certain operations. Specifi-
cally, the magnitude of c is “unitarily invariant” in the sense that |c| = |ucv| for
all u, v ∈ C satisfying |u| = |v| = 1. On the other hand, the phase is “congru-
ence invariant” in the sense that ∠c = ∠w∗cw for all nonzero w ∈ C, where the
superscript ∗ denotes the complex conjugate transpose.

The magnitude and phase have the following fundamental properties:

|ab| = |a||b| (multiplicativity) (1)

|a+ b| ≤ |a|+ |b| (subadditivity) (2)

∠(ab) = ∠a+ ∠b mod 2π (3)

∠(a+ b) ∈ Co{∠a,∠b} if |∠a− ∠b| < π, (4)

where Co denotes the convex hull. The observation that (1) and (3) are simple
equalities whereas (2) and (4) are not enhances our understanding that the
multiplication operation is easier to perform using the polar form while the
addition operation the rectangular form of complex numbers.

It is well accepted that an n×n complex matrix C has n magnitudes, served
by the n singular values

σ(C) =
[
σ1(C) σ2(C) . . . σn(C)

]
arranged in such a way that

σ(C) = σ1(C) ≥ σ2(C) ≥ · · · ≥ σn(C) = σ(C).

The singular values can be obtained from a singular value decomposition C =
USV ∗, where U, V are unitary, and S = diag {σ1(C), σ2(C), . . . , σn(C)} [1,
Theorem 2.6.3]. They can also be derived from the following maximin and
minimax expressions [1, Theorem 7.3.8]:

σi(C) = max
M:dimM=i

min
x∈M,‖x‖=1

‖Cx‖

= min
N :dimN=n−i+1

max
x∈N ,‖x‖=1

‖Cx‖.

The singular values are unitarily invariant in the sense that

σ(C) = σ(U∗CV )

for all unitary matrices U and V . In particular, permuting the rows or columns
of C does not change its singular values.

The singular values provide a bound on the magnitudes of the eigenvalues
of C in the majorization order. Given two vectors x, y ∈ Rn, denote by x↓ and
y↓ the rearranged versions of x and y, respectively, in which their elements are
sorted in a non-increasing order. Then, x is said to be majorized by y, denoted
by x ≺ y, if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , k = 1, . . . , n− 1, and

n∑
i=1

x↓i =

n∑
i=1

y↓i .
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Moreover, x is said to be weakly majorized by y from below, denoted by x ≺w y,
if the last equality sign is changed to ≤. For two nonnegative vectors x, y ∈ Rn,
x is said to be log-majorized by y, denoted by x ≺log y, if

k∏
i=1

x↓i ≤
k∏
i=1

y↓i , k = 1, . . . , n− 1, and

n∏
i=1

x↓i =

n∏
i=1

y↓i .

Note that log-majorization is stronger than weak-majorization, i.e., x ≺log y
implies x ≺w y [2, Chapter 5, A.2.b]. For more details on the theory of ma-
jorization, we refer to [2] and the references therein. Denote the vector of
eigenvalues of C by

λ(C) =
[
λ1(C) λ2(C) . . . λn(C)

]
.

It is well known that the magnitudes of the eigenvalues are bounded by the
singular values in the following manner [2, Theorem 9.E.1]:

|λ(C)| ≺log σ(C),

which implies, among other things, that

|λ(C)| ≺w σ(C).

The singular values of AB and A+B are related to those of A and B through
the following majorization type inequalities resembling (1) and (2), respectively,
[2, Theorems 9.H.1 and 9.G.1.d]

σ(AB) ≺log σ(A)� σ(B), (5)

σ(A+B) ≺w σ(A) + σ(B), (6)

where � denotes the Hadamard product, i.e., the elementwise product.
In contrast to the magnitudes of a complex matrix C, there does not exist

a universally accepted definition of phases of C. What properties should the
phases satisfy? In this paper, we advocate a definition of matrix phases and
derive some of their properties as counterparts to those of the singular values.

An early attempt [3] defined the phases of C as the phases of the eigenvalues
of the unitary part of its polar decomposition, as motivated by the seeming
generalization of the polar form of a scalar to the polar decomposition of a
matrix. As in the scalar case, ambiguity arises when defining phases for a
singular C. Hence, only nonsingular matrices are relevant. More precisely, let
the left and right polar decompositions of a nonsingular matrix C be given by
C = PU = UQ, where P and Q are positive definite and U is unitary [1,
Theorem 7.3.1]. The authors of [3] proposed to define the phases of C as

ψ(C) = ∠λ(U). (7)

The ∠ function may take values in a fixed interval of length 2π, such as (−π, π]
or [0, 2π). Phases defined through the polar decomposition have the advantage
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that they are applicable to any square nonsingular matrices. However, they do
not possess certain desired properties, which will be discussed later.

In this paper, we shall revisit the matrix canonical angles introduced in [4]
and propose to adopt them as the phases of a complex matrix. The phases
defined in this way have the desired properties as shown in earlier studies and
this paper.

2. Definition of phases

First, we review the concepts of numerical range and angular numerical range
[5, Chapter 1]. The numerical range, also called the field of values, of a matrix
C ∈ Cn×n is defined as

W (C) = {x∗Cx : x ∈ Cn, ‖x‖ = 1},

which, as a subset of C, is compact and contains the spectrum of C. In addition,
according to the Toeplitz-Hausdorff theorem, W (C) is convex. The angular
numerical range, also called the angular field of values, of C is defined as

W ′(C) = {x∗Cx : x ∈ Cn, x 6= 0}.

If 0 /∈W (C), then W (C) is completely contained in an open half plane by its
convexity. In this case, C is said to be a sectorial matrix [6], also called sector
matrix in [7]. The sectorial matrices have been widely studied in the literature
[8, 9, 10, 11].

Let C be a sectorial matrix. It is well known [12, 13, 8] that C is congruent
to a unitary matrix. In particular, the unitary matrix can be chosen to be
diagonal, i.e., there exist a nonsingular matrix T and a diagonal unitary matrix
D such that

C = T ∗DT. (8)

The factorization (8) is called sectorial decomposition [11]. Clearly, W ′(D) =
W ′(C) and thus D is also sectorial. We define the phases of C, denoted by

φ(C) = φ1(C) ≥ φ2(C) ≥ · · · ≥ φn(C) = φ(C),

to be the phases of the eigenvalues (i.e., diagonal elements) of D so that φ(C)−

φ(C)<π and γ(C)=
φ(C) + φ(C)

2
, called the phase center of C, lies in (−π, π].

The phases defined in this way coincide with the canonical angles of C intro-
duced in [4]. Define

φ(C) = [φ1(C) φ2(C) . . . φn(C)].

A sectorial decomposition for a sectorial matrix is not unique. Nevertheless,
the diagonal unitary matrix D is unique up to a permutation, as pointed out
in [11]. As such, the phases of a sectorial matrix are uniquely defined. The
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uniqueness of the phases also follows directly from the maximin and minimax
expressions [12, Lemma 8]:

φi(C) = max
M:dimM=i

min
x∈M,‖x‖=1

∠x∗Cx

= min
N :dimN=n−i+1

max
x∈N ,‖x‖=1

∠x∗Cx.
(9)

In particular,

φ(C) = max
x∈Cn,‖x‖=1

∠x∗Cx,

φ(C) = min
x∈Cn,‖x‖=1

∠x∗Cx,

from which we can observe that φ(C) and φ(C) enjoy good geometric interpre-
tations. Consider the two supporting rays of W (C). Since 0 /∈ W (C), both
supporting rays can be determined uniquely. Figure 1 illustrates an example of
W (C) and its supporting rays. The two angles from the positive real axis to
the supporting rays are φ(C) and φ(C) respectively. The other phases of C lie
in between.

�𝜙𝜙 𝐶𝐶
𝜙𝜙 𝐶𝐶0 Re

Im

𝑊𝑊 𝐶𝐶

Figure 1: Geometric interpretations of φ(C) and φ(C).

Given matrix C, we can check whether it is sectorial or not by plotting its
numerical range. From the plot of numerical range, we can also determine the
value of γ(C). How to efficiently compute φ(C) is an important issue. The
following observation provides some insights along this direction. Suppose C is
sectorial. Then it admits a sectorial decomposition C = T ∗DT and thus

C−1C∗ = T−1D−1T−∗T ∗D∗T = T−1D−2T,

indicating that C−1C∗ is similar to a diagonal unitary matrix. Hence, we can
first compute ∠λ(C−1C∗), taking values in (−2γ(C)−π,−2γ(C)+π), and let
φ(C) = − 1

2∠λ(C−1C∗). This gives one possible way to compute φ(C). We are
currently exploring other methods, hopefully of lower complexity, for determi-
nation of the interval in which matrix phases take values.
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It is worth noting that the class of unitoids was introduced in [14] to consist
of matrices that are congruent to unitary matrices. Clearly, sectorial matrices
constitute a special type of unitoid matrices. A nonsectorial unitoid matrix
admits a factorization of the form (8). However, in this case, the eigenvalues of
D lie on an arc of the unit circle of length no less than π. In this paper, we do
not define the phases of such matrices.

Example 2.1. We have

φ

 1 0 0
0 eiπ/4 0
0 0 e−iπ/4

 =
[
π/4 0 −π/4

]
and

φ

 −1 0 0
0 ei3π/4 0
0 0 e−i3π/4

 =
[
5π/4 π 3π/4

]
.

The matrix  1 0 0
0 ei2π/3 0
0 0 e−i2π/3


is not sectorial. We do not define the phases of this matrix, since in this en-
deavor there would clearly be an ambiguity in deciding whether the phases should
be taken as

[
2π/3 0 −2π/3

]
,
[
−2π/3 −4π/3 −2π

]
, or

[
4π/3 2π/3 0

]
.

It is easy to see that the phases have the following simple properties:

1. The phases of a sectorial normal matrix are the phases of its eigenvalues.

2. The phases are invariant under congruence transformation, i.e., φ(C) =
φ(P ∗CP ) for every nonsingular P .

3. The phases of C belong to (−π/2, π/2) if and only if C has a positive
definite Hermitian part, i.e., (C + C∗)/2 > 0. Such matrices are called
strictly accretive matrices [15] [16, p. 279].

If we were to use ψ(C) in (7) as the definition of phases, then property 1
would be satisfied. However, properties 2-3 would not hold as illustrated in the
following example.

Example 2.2. We have

ψ

([
cos θ − sin θ
sin θ cos θ

])
=
[
θ −θ

]
.

But

ψ

([
cosα 0

0 sinα

][
cos θ − sin θ
sin θ cos θ

][
cosα 0

0 sinα

])
=

[
arccos

cos θ√
1− sin2 θ cos2 2α

− arccos
cos θ√

1− sin2 θ cos2 2α

]
,
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which differs from
[
θ −θ

]
.

We also have

ψ

([
cos2 α 0

0 sin2 α

][
cos θ − sin θ
sin θ cos θ

])
=
[
θ −θ

]
,

which is invariant of α ∈ (0, π/2). However, the determinant of the Hermitian
part is given by

sin2 2α cos2 θ − cos2 2α sin2 θ,

which is negative for some θ close to π/2 and α away from π/4, such as θ = π/4
and α = π/12. That means the matrix is not strictly accretive for these values
of θ and α.

The following lemma shows that the phases of a sectorial matrix provide
a bound on the phases of its eigenvalues, just as the magnitudes of a matrix
provide a bound on the magnitudes of its eigenvalues. The lemma has been
proved implicitly in [12, Lemma 9] and also shown in [4, Theorem 1].

Lemma 2.3. For a sectorial matrix C, the phases of its eigenvalues can be
chosen so that

∠λ(C) ≺ φ(C).

Consider the matrix

C =

([
cosα 0

0 sinα

][
cos θ − sin θ
sin θ cos θ

][
cosα 0

0 sinα

])
in Example 2.2, where α, θ ∈ (0, π2 ). One can see from the discussion therein
that ψ(C) ≺ φ(C). In fact, this is generally true for any sectorial matrix C, if
ψ(C) takes values in the same interval with φ(C), which can be inferred from
[12, Lemma 9].

3. Sectorial matrix decompositions

As discussed in the previous section, a sectorial matrix C admits a sectorial
decomposition as in (8), which is not unique. If the unitary matrix in (8) is
not restricted to be diagonal, one gains more flexibility. In fact, letting T =
V P be the unique right polar decomposition and U = V ∗DV leads to a new
decomposition

C = PUP,

where P is positive definite and U is unitary. This is called the symmetric polar
decomposition (SPD). Meanwhile, letting T = QR be the unique QR factor-
ization [1, Theorem 2.1.14] with Q being unitary and R being upper triangular
with positive diagonal elements and letting W = Q∗DQ leads to another de-
composition

C = R∗WR.

This is called the generalized Cholesky factorization (GCF).
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Theorem 3.1. The SPD and GCF of a sectorial matrix C are unique.

Proof. We first show the uniqueness of the SPD. Suppose C admits two SPDs:

C = P1U1P1 = P2U2P2.

Since the phases of a sectorial matrix are unique, we can find unitary matrices
W1 and W2 such that U1 = W ∗1DW1 and U2 = W ∗2DW2, where

D = diag
{
eiφ1(C), eiφ2(C), . . . , eiφn(C)

}
.

It follows that P1W
∗
1DW1P1 = P2W

∗
2DW2P2, yielding

D = T ∗DT, (10)

where T = W2P2P
−1
1 W ∗1 . Suppose within the phases of C there are in total m

distinct values φ[1], φ[2], . . . , φ[m], arranged in a decreasing order with respective
multiplicities given by n1, n2, . . . , nm. Then, we can rewrite D as

D = diag{eiφ[1]In1
, eiφ[2]In2

, . . . , eiφ[m]Inm}

and partition T with compatible dimensions into

T =


T11 T12 · · · T1m
T21 T22 · · · T2m

...
...

. . .
...

Tm1 Tm2 · · · Tmm

 ,
where Tij ∈ Cni×nj .

Simple computations from (10) yield

eiφ[k]Ink =

m∑
l=1

eiφ[l]T ∗lkTlk, k = 1, 2, . . . ,m and

0 =

m∑
l=1

eiφ[l]T ∗ljTlk, j, k = 1, 2, . . . ,m, j 6= k.

(11)

Let k = 1 in the first equation in (11). Then we have

eiφ[1]In1 = eiφ[1]T ∗11T11 + eiφ[2]T ∗21T21 + · · ·+ eiφ[m]T ∗m1Tm1. (12)

Taking the trace of both sides of the equation yields

n1e
iφ[1] = eiφ[1]Tr(T ∗11T11) + · · ·+ eiφ[m]Tr(T ∗m1Tm1).

By the property (4), and the fact that 0<φ[1]−φ[m]<π, it follows that

∠(eiφ[1]Tr(T ∗11T11) + · · ·+ eiφ[m]Tr(T ∗m1Tm1)) ≤ ∠eiφ[1] ,
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where the equality holds if and only if

Tr(T ∗21T21) = · · · = Tr(T ∗m1Tm1) = 0 and Tr(T ∗11T11) 6= 0,

yielding that Tl1 = 0, l = 2, . . . ,m. Thus the equation (12) becomes eiφ[1]In1 =
eiφ[1]T ∗11T11, from which T ∗11T11 = In1 follows. Consequently, by the second
equation in (11), we have

T1j = 0, j 6= 1.

Repeated applications of the arguments above then yield

T ∗kkTkk = Ink , k = 1, 2, . . . ,m, and Tlk = 0, l 6= k,

which means T is a block diagonal unitary matrix. Therefore, W ∗2 TW1 is unitary
and P2 = W ∗2 TW1P1 gives a polar decomposition of P2. By the uniqueness of
polar decomposition, we have P2 = P1 and thus U1 = U2.

The uniqueness of the GCF can be shown using the same lines of argu-
ments and the uniqueness of the QR decomposition in lieu of that of the polar
decomposition.

For a sectorial matrix C with the polar decomposition C = P̃ Ũ and the
SPD C = PUP , where P̃ , P are positive definite, and Ũ , U are unitary, we
have introduced the majorization relation between ∠λ(C), ψ(C) and φ(C) in
the previous section. There is an analogous relation between |λ(C)|, σ(P̃ ) and
σ(P ). From [2, Theorem 9.E.1], we know

|λ(C)| ≺log σ(P̃ ).

Since P̃ = PUPŨ∗, in view of inequality (5), we have

σ(P̃ ) ≺log σ
2(P ),

where σ2(P ) is the elementwise square of σ(P ).
For a nonsectorial unitoid matrix, one can also write its SPD and GCF as

above. However, neither SPD nor GCF is unique in this case.

Example 3.2. Consider the unitoid matrix

[
0 1
1 0

]
. For any a > 0,

[
a 0
0 1

a

] [
0 1
1 0

] [
a 0
0 1

a

]
=

[
0 1
1 0

]
is both an SPD and a GCF.

In the case where C is a real sectorial matrix, sectorial decomposition, SPD,
and GCF have their respective real counterparts. To see this, note that the
numerical range of a real sectorial matrix is symmetric about the real axis. Let

H =
1

2
(C + C∗) and S =

1

2
(C − C∗).
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Without loss of generality, suppose that H is positive definite (otherwise we

could work with −C). Let H−
1
2 be the inverse of the unique positive definite

square root of H. Then

H−
1
2CH−

1
2 = H−

1
2 (H + S)H−

1
2 = I +H−

1
2SH−

1
2 ,

which is a real normal matrix. In other words, C is congruent to a real normal
matrix via a real congruence. Since a real normal matrix A can be decomposed
[1, Theorem 2.5.8] into

A = Q∗diag{A1, . . . , Ak}Q, 1 ≤ k ≤ n,

where Q is a real orthogonal matrix and Ai is either a real scalar or a real 2-by-2
matrix of the form

Ai =

[
αi βi
−βi αi

]
,

it follows that a real sectorial matrix C can be factorized as

C = T ∗DT,

where T is a nonsingular real matrix and D is a real block-diagonal orthogonal
matrix with each block being either a scalar or a 2-by-2 matrix. We call this a
real sectorial decomposition, which is nonunique in general. By performing the
real polar decomposition and real QR decomposition of T , we arrive, respec-
tively, at the real SPD and GCF, whose uniqueness follows from Theorem 3.1.
To be specific, there exist unique real positive definite P , real upper triangular
R with positive diagonal elements, and real orthogonal U and W such that

C = PUP = R∗WR.

4. Phases of compressions and Schur complements

There is an interlacing relation between the magnitudes of a matrix C and
those of its (n− k)× (n− k) submatrices [1, Problem 7.3.P44]:

σi(C) ≥ σi(U∗CV ) ≥ σi+k(C), i = 1, . . . , n− k,

for all n × (n − k) isometries U and V , which are matrices with orthonormal
columns. In particular, when k = 1, we have

σ1(C) ≥ σ1(U∗CV ) ≥ σ2(C) ≥ · · · ≥ σn−1(U∗CV ) ≥ σn(C).

Let C ∈ Cn×n be partitioned as C =

[
C11 C12

C21 C22

]
, where C11 ∈ Ck×k. If C11

is nonsingular, then the Schur complement [17] of C11 in C, denoted by C/11,
exists and is given by C/11 = C22 − C21C

−1
11 C12. It can be inferred from [17,

Corollary 2.3] that σ(C/11) and σ(C) satisfy the following interlacing relation:

σi(C) ≥ σi(C/11) ≥ σi+k(C), i = 1, . . . , n− k.
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In this section, we introduce the interlacing properties between the phases
of a sectorial matrix and those of its compressions and Schur complements.

Let U be an n×(n−k) isometry, then C̃ = U∗CU is said to be a compression
of C. The phases of C̃ and those of C have the following interlacing property [18].

Lemma 4.1. Let C∈Cn×n be sectorial and C̃∈C(n−k)×(n−k) be a compression
of C. Then C̃ is also sectorial and

φj(C) ≥ φj(C̃) ≥ φj+k(C), for j = 1, . . . , n− k. (13)

Note that in the special case where k = 1, i.e., C̃ ∈ C(n−1)×(n−1), the
inequality (13) becomes

φ1(C) ≥ φ1(C̃) ≥ φ2(C) ≥ · · · ≥ φn−1(C̃) ≥ φn(C).

Remark 4.2. Since any full-rank X∈Cn×(n−k) can be QR-decomposed as X=
QR, where Q ∈ Cn×(n−k) is an isometry and R ∈ C(n−k)×(n−k) is a nonsingular
matrix, it follows from Lemma 4.1 that for any sectorial C ∈ Cn×n and j =
1, . . . , n− k,

φj(C) ≥ φj(X∗CX) = φj(Q
∗CQ) ≥ φj+k(C).

By exploiting the interlacing property of the phases of compressions of a
sectorial matrix, we can deduce an interlacing property of the phases of the

Schur complements of a sectorial matrix. Let C =

[
C11 C12

C21 C22

]
∈ Cn×n be

sectorial, where C11 ∈ Ck×k. In light of Lemma 4.1, C11 is sectorial and hence
nonsingular.

Theorem 4.3. Let C∈Cn×n be sectorial. Then C/11 is also sectorial and

φj(C) ≥ φj(C/11) ≥ φj+k(C), for j = 1, . . . , n− k.

Proof. Let C = PUP be the SPD of C. Then

C−1 = P−1U−1P−1.

Hence, C−1 is sectorial. Moreover, if φ(C) takes values in the interval (γ(C)−
π
2 , γ(C)+ π

2 ), then φ(C−1) = [−φn(C) . . . −φ1(C)], taking values in the interval
(−γ(C)− π

2 ,−γ(C) + π
2 ).

We partition C−1 into C−1 =

[
(C−1)11 (C−1)12
(C−1)21 (C−1)22

]
. Then C/−111 = (C−1)22.

By Lemma 4.1, (C−1)22 is sectorial and thus, C/−111 is sectorial and so is C/11.
In view of (13), we have

φj(C
−1) ≥ φj

(
(C−1)22

)
= φj(C/

−1
11 ) ≥ φj+k(C−1), j = 1, . . . , n− k.
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Since

φj(C
−1) = −φn−j+1(C),

φj(C/
−1
11 ) = −φn−k−j+1(C/11),

it follows that

φj(C) ≥ φj(C/11) ≥ φj+k(C), j = 1, . . . , n− k.

Lemma 4.1 can also be used to construct a simple proof of the following re-
sult, as a special case of [19, Theorem 3.11], which will be used in the subsequent
sections.

Lemma 4.4. Let C ∈ Cn×n be a sectorial matrix. Then

max
X∈Cn×k is full rank

k∑
i=1

φi(X
∗CX) =

k∑
i=1

φi(C), (14)

min
X∈Cn×k is full rank

k∑
i=1

φi(X
∗CX) =

n∑
i=n−k+1

φi(C). (15)

Proof. Application of Lemma 4.1 and Remark 4.2 yields

k∑
i=1

φi(X
∗CX) ≤

k∑
i=1

φi(C)

for any full-rank matrix X ∈Cn×k. Let C = T ∗DT be a sectorial decomposi-
tion. Then defining the full-rank X = T−1

[
Ik 0

]∗
gives

∑k
i=1 φi(X

∗CX) =∑k
i=1 φi(C), which proves (14). The validity of (15) can be shown similarly.

5. Compound numerical ranges and numerical ranges of compounds

This section explores a useful notion known as the compound numerical
range. It is crucial to deriving the majorization result in the succeeding section
on products of matrices. While the compound numerical range is related to the
numerical range of a compound matrix, we elucidate below that the former is
more informative from the perspective of characterizing matrix phases.

Let A ∈ Cn×m and 1 ≤ k ≤ min{n,m}. The kth compound of A, denoted
by A(k), is the ( nk )× (mk ) matrix whose elements are

det

(
A

[
i1, . . . , ik
j1, . . . , jk

])
arranged lexicographically, where

A

[
i1, . . . , ik
j1, . . . , jk

]

12



represents the submatrix ofA consisting of rows i1, . . . , ik and columns j1, . . . , jk.
It is known that the eigenvalues of the kth compound of a square A are prod-
ucts (k at a time) of the eigenvalues of A. In particular, A(1) = A and when
A ∈ Cn×n, A(n) = detA. Moreover, if A is Hermitian (resp. unitary), A(k) is
also Hermitian (resp. unitary). It also holds that (AB)(k) = A(k)B(k) by the
Binet-Cauchy theorem. For more details on compound matrices, we refer to [2,
Chapter 19] and [20, Chapter 6].

Given A ∈ Cn×n and k = 1, . . . , n, we define the kth compound spectrum as

Λ(k)(A) =

{
k∏

m=1

λim(A) : 1 ≤ i1 < · · · < ik ≤ n

}
.

It follows that Λ(k)(A) ⊂W (A(k)), the numerical range of the compound matrix
A(k). Note that even if A is sectorial, its compound A(k) is not necessarily
sectorial, which means we can have the origin lying in the interior of W (A(k))
for a sectorial A. This shows that the numerical range of a compound matrix
is not generally suitable for characterizing compound spectra from an angular
point of view.

For k = 1, . . . , n, define the kth compound numerical range, also called
decomposable numerical range in [21], of A ∈ Cn×n as

W(k)(A) =

{
k∏

m=1

λm(X∗AX) : X ∈ Cn×k is isometric

}
,

and the kth compound angular numerical range of A as

W ′(k)(A) =

{
k∏

m=1

λm(X∗AX) : X ∈ Cn×k is full rank

}
.

When k = 1, the above definitions specialize to the familiar notions of numerical
range and angular numerical range, respectively. It is straightforward to see that
if 0 /∈ W (A), then 0 /∈ W(k)(A). Furthermore, W(k)(A) is always compact, but
is not convex in general.

The following lemma generalizes [5, Theorem 1.7.6], which covers the special
case of k = 1.

Lemma 5.1. Let A,B ∈ Cn×n for which B is sectorial. Then

Λ(k)(AB
−1) ⊂W(k)(A)/W(k)(B).

Proof. First consider the case where AB−1 is diagonalizable. By the definition
of eigenvectors and eigenvalues, there exists a full-rankX=

[
xi1 xi2 . . . xik

]
∈

Cn×k such that

X∗AB−1 = diag{λi1(AB−1), λi2(AB−1), . . . , λik(AB−1)}X∗

13



for 1 ≤ i1 < · · · < ik ≤ n. Factorize X as X = UP by applying the polar
decomposition, where U ∈ Cn×k is isometric and P ∈ Ck×k is positive definite.
Consequently,

U∗AB−1 = P−1diag{λi1(AB−1), λi2(AB−1), . . . , λik(AB−1)}PU∗.

Post-multiplying both sides by BU and taking the determinants yields

k∏
i=1

λi(U
∗AU) =

k∏
m=1

λim(AB−1)

k∏
i=1

λi(U
∗BU).

The claim then follows by dividing both sides by
∏k
i=1 λi(U

∗BU).
When AB−1 is not diagonalizable, choose a sequence {Ai} with limit A such

that AiB
−1 is diagonalizable for all i = 1, 2, . . . . It follows from the arguments

above that

Λ(k)(AiB
−1) ⊂W(k)(Ai)/W(k)(B) for all i = 1, 2, . . . .

Given an isometricX ∈ Cn×k, we have
∏k
m=1 λm(X∗AiX)→

∏k
m=1 λm(X∗AX)

by the continuity of eigenvalues. Correspondingly, W(k)(Ai) → W(k)(A) in the
Hausdorff metric. Similarly, we have Λ(k)(AiB

−1)→ Λ(k)(AB
−1). Thus the

desired claim follows.

The next result demonstrates that the compound numerical range provides
a tighter characterization of the compound spectrum than the numerical range
of a compound matrix.

Corollary 5.2. Λ(k)(A) ⊂W(k)(A) ⊂W (A(k)).

Proof. Letting B = I in Lemma 5.1 and noting that W(k)(I) = {1} yields the
first inclusion. The second inclusion follows from the fact that for any isometric
X ∈ Cn×k,

det(X∗AX) = (X∗AX)(k) = X∗(k)A(k)X(k)

and X(k) is a normalized column vector, since

X∗X = I =⇒ X∗(k)X(k) = I(k) = 1.

The following lemma generalizes [5, Theorem 1.7.8], which covers the special
case of k = 1.

Lemma 5.3. Let A,B ∈ Cn×n for which B is sectorial. Then

Λ(k)(AB) ⊂W ′(k)(A)W ′(k)(B).

Proof. By Lemma 5.1, we have

Λ(k)(AB) ⊂W(k)(A)/W(k)(B
−1).

14



We show below that
1/W(k)(B

−1) ⊂W ′(k)(B),

from which the claimed result follows. To this end, let c ∈ 1/W(k)(B
−1). This

means for some isometric X ∈ Cn×k, we have

c =

k∏
m=1

1

λm(X∗B−1X)
=

k∏
m=1

1

λm(X∗B−∗B∗B−1X)
=

k∏
m=1

1

λm(Y ∗B∗Y )
,

where Y = B−1X is full rank. Noting that c = |c|2/c̄, we have

c = |c|2
k∏

m=1

λm(Y ∗B∗Y )∗ = |c|2
k∏

m=1

λm(Y ∗BY ) ∈W ′(k)(B),

as desired.

6. Phases of matrix product

The phases of an individual complex matrix and their properties have been
the focus in Sections 2 to 4. Here, we study the product of two sectorial matrices
A and B.

In view of the majorization result on the magnitudes of the product of two
matrices as in (5), it would be desirable to have a phase counterpart of the form

φ(AB) ≺ φ(A) + φ(B)

for sectorial matrices A,B. We know that this is true when A,B are unitary
[22, 23]. Unfortunately, this fails to hold in general, as shown in the following
example.

Example 6.1. Let A,B be n×n positive definite matrices, then φ(A) = φ(B) =
0. However, AB is in general not positive definite, and hence φ(AB) 6= 0.

Notwithstanding, the following weaker but very useful result can be derived.
The case when A and B are strictly accretive matrices has been shown in [24]
with a different approach of proof.

Theorem 6.2. Let A,B ∈ Cn×n be sectorial matrices, and ∠λ(AB) take values
in (γ(A) + γ(B)− π, γ(A) + γ(B) + π). Then

∠λ(AB) ≺ φ(A) + φ(B). (16)

Proof. Let Â = e−iγ(A)A and B̂ = e−iγ(B)B. Then both Â and B̂ are sectorial
matrices with γ(Â) = γ(B̂) = 0 and ∠λ(ÂB̂) takes values in (−π, π). Label
the eigenvalues of ÂB̂ so that ∠λ1(ÂB̂) ≥ ∠λ2(ÂB̂) ≥ · · · ≥ ∠λn(ÂB̂). Since
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φi(Â) = φi(A)−γ(A), φi(B̂) = φi(B)−γ(B) and ∠λi(ÂB̂) = ∠λi(AB)−γ(A)−
γ(B) for i = 1, . . . , n, the inequality (16) holds if and only if

∠λ(ÂB̂) ≺ φ(Â) + φ(B̂).

To show the above inequality, we note that
∏k
i=1 λi(ÂB̂) ∈Λ(k)(ÂB̂), k =

1, . . . , n. In view of Lemma 5.3, it follows that
∏k
i=1 λi(ÂB̂)∈W ′(k)(Â)W ′(k)(B̂).

This means there exist full-rank matrices X,Y ∈Cn×k such that

k∏
i=1

λi(ÂB̂) =

k∏
i=1

λi(X
∗ÂX)

k∏
i=1

λi(Y
∗B̂Y ).

Since phases of Â and B̂ are in (−π2 ,
π
2 ) and ∠λ(ÂB̂) takes values in (−π, π),

we have

k∑
i=1

∠λi(ÂB̂) =

k∑
i=1

∠λi(X
∗ÂX) +

k∑
i=1

∠λi(Y
∗B̂Y )

=

k∑
i=1

φi(X
∗ÂX) +

k∑
i=1

φi(Y
∗B̂Y )

≤
k∑
i=1

φi(Â) +

k∑
i=1

φi(B̂), (17)

where the inequality (17) is due to Lemma 4.4. Note that when k = n, the in-
equality (17) becomes equality, as matrix phases are invariant under congruence
transformation. This completes the proof.

For any A,B ∈ Cn×n, it is known that

σi(AB) ≤ σi(A)σ1(B) for i = 1, . . . , n.

This is a special form of the more general Lidskii-Wielandt inequality, which
can be found in [25]. While it would be desirable to have a counterpart to this
inequality for sectorial A and B in the form of

∠λi(AB) ≤ φi(A) + φ1(B) for i = 1, . . . , n,

this is generally not true. For a simple counterexample, let B = I and note that

∠λi(A) ≤ φi(A) for i = 1, . . . , n

does not hold in general.

7. Phases of matrix sum

Given α, β for which 0 ≤ β − α < 2π, define

C[α, β] =
{
C ∈ Cn×n : C is sectorial and φ1(C)≤β, φn(C)≥α

}
.
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We omit the dependence of C[α, β] on the matrix size n for notational simplicity.
Clearly, C[α, β] is a cone. The following theorem can be inferred from the
discussions on [11, p. 2]. A proof is presented here for completeness.

Theorem 7.1. Let A,B ∈ C[α, β] with β−α < π. Then A+B ∈ C[α, β].

Proof. Since A,B ∈ C[α, β], β − α < π, there exists an open half plane con-
taining both W (A) and W (B). In view of the subadditivity of numerical range
[5, Property 1.2.7], i.e., W (A + B) ⊂ W (A) + W (B) , W (A + B) is contained
in the same open half plane. Thus, A+B is sectorial. Moreover,

φ1(A+B) = max
x∈Cn,‖x‖=1

∠(x∗Ax+ x∗Bx)

≤ max
x∈Cn,‖x‖=1

max(∠x∗Ax,∠x∗Bx) (18)

= max(φ1(A), φ1(B))

≤ β,
φn(A+B) = min

x∈Cn,‖x‖=1
∠(x∗Ax+ x∗Bx)

≥ min
x∈Cn,‖x‖=1

min(∠x∗Ax,∠x∗Bx) (19)

= min(φn(A), φn(B))

≥ α,

where the inequalities (18) and (19) follow from property (4) of complex scalars.
The proof is complete.

This theorem says that when β − α < π, C[α, β] is a convex cone. A special
case is given by C[0, 0], i.e., the cone of positive definite matrices.

Theorem 7.1 provides an upper and a lower bound on the phases of A+B.
It would be interesting to explore for more results regarding φi(A + B), such
as a majorization property similar to Theorem 6.2 or involving other geometric
descriptions of φi(A+B).

8. Rank robustness against perturbations

The rank of I + AB plays an important role in the field of systems and
control [26]. It is straightforward to see that if σ(A) and σ(B) are sufficiently
small, then I +AB has full rank. If the magnitudes of A are known in advance,
a problem well studied [26, 27] in the field of robust control is how large the
magnitudes of B need to be before I +AB loses rank by 1, by 2, ..., or by k. It
can be inferred from the Schmidt-Mirsky theorem [28, Theorem 4.18] that for a
given matrix A ∈ Cn×n,

inf {σ(B) : rank(I +AB) ≤ n− k} = σk(A)−1. (20)
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Define B[γ] = {C ∈ Cn×n : σ(C) ≤ γ} to be the set of matrices whose largest
singular values are bounded above by γ > 0. Then (20) is equivalent to that

rank(I +AB) > n− k for all B ∈ B[γ] if and only if γ < σk(A)
−1

.
On the other hand, intuitively we can see that if φ(A) and φ(B) are suffi-

ciently small in magnitudes, then I + AB has full rank. This motivates us to
establish a phase counterpart to the analysis of rank robustness.

For α ∈ [0, kπ), define

Ck[α] =

{
C ∈ Cn×n : C is sectorial and

k∑
i=1

φi(C) ≤ α,
n∑

i=n−k+1

φi(C) ≥ −α

}
.

This set is a cone but possibly non-convex unless k = 1 and α < π/2. Clearly,
C1[α] is simply C[−α, α]. The next theorem is concerned with the robustness of
the rank of I +AB under phaseal perturbations on B.

Theorem 8.1. Let A ∈ Cn×n be sectorial with phases in (−π, π) and k =
1, . . . , n. Then rank (I+AB) > n−k for all B ∈ Ck[α], α ∈ [0, kπ), if and only if

α < min

{
kπ −

k∑
i=1

φi(A), kπ +

n∑
i=n−k+1

φi(A)

}
.

Proof. First, label the eigenvalues of AB so that ∠λ1(AB)≥∠λ2(AB)≥· · · ≥
∠λn(AB). Since A and B are sectorial, I +AB loses rank by k only if

∠λ1(AB) = · · · = ∠λk(AB) = π or ∠λn−k+1(AB) = · · · = ∠λn(AB) = −π.

Sufficiency thus follows from Theorem 6.2, whereby

k∑
i=1

∠λi(AB) ≤
k∑
i=1

φi(A) + φi(B) < kπ

and
n∑

i=n−k+1

∠λi(AB) ≥
n∑

i=n−k+1

φi(A) + φi(B) > −kπ.

For necessity, suppose to the contraposition that
∑k
i=1 φi(A) + α ≥ kπ. We

construct below a matrix B ∈ Ck[α] such that the rank of I + AB is n − k.
Let A = T ∗DT be a sectorial decomposition. Define B = T−1ET−∗, where
E = diag{e1, e2, . . . , en} satisfies

|ei| = 1 for i = 1, . . . , k,

φi(A) + ∠ei = π for i = 1, . . . , k, and

ei = 1 for i = k + 1, . . . , n.
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Clearly, B is sectorial. Moreover,

k∑
i=1

φi(B) =

k∑
i=1

∠ei ≤ α,

n∑
i=n−k+1

φi(B) ≥ −α

and
AB = T ∗DTT−1ET−∗ = T ∗DET−∗

has k eigenvalues at −1, whereby the rank of I +AB is n− k.
The necessity of

∑n
i=n−k+1 φi(A)− α > −kπ can be shown similarly.

The specialization of Theorem 8.1 to the case where k = 1 is of particular
importance in the study of robust control. Specifically, the theorem says that for
a sectorial matrix A ∈ Cn×n with phases in (−π, π) and α ∈ [0, π), there holds
rank (I+AB) = n for all B ∈ C1[α] if and only if α < min{π−φ1(A), π+φn(A)}.

Combining this understanding and (20), we have the following result. The
proof is straightforward and is thus omitted for brevity.

Theorem 8.2. Let A ∈ Cn×n be sectorial with phases in (−π, π). Then rank (I+
AB) = n for all B ∈ B[γ] ∪ C1[α] with γ > 0, α ∈ [0, π), if and only if

γ < σ1(A)
−1

and α < min{π − φ1(A), π + φn(A)}.

9. Banded sectorial matrix completion

The matrix completion problem is to determine the unspecified entries of
a partial matrix so that the completed matrix has certain desired properties.
Consider partial matrices of the form

C =



C11 · · · C1,1+p ?
...

. . .

Cp+1,1 Cn−p,n
. . .

...
? Cn,n−p · · · Cnn

 ,

where Cij ∈ Cni×nj is specified for |i − j| ≤ p with p a fixed integer 0 ≤ p ≤
n− 1. The unspecified blocks are represented by question marks. Such partial
matrices are called p-banded. See [29] for comprehensive discussions of matrix
completions. It is shown in [30] that C admits a positive semidefinite completion
if and only if  Cll · · · Cl,l+p

...
...

Cl+p,l · · · Cl+p,l+p

 ≥ 0, for l = 1, . . . , n− p.

In a similar spirit, we have the following result.
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Theorem 9.1. A p-banded partial matrix C admits a completion in C[α, β] with
0 ≤ β − α < π if and only if Cll · · · Cl,l+p

...
...

Cl+p,l · · · Cl+p,l+p

 ∈ C[α, β], for l = 1, . . . , n− p.

Proof. The necessity follows from Lemma 4.1. It remains to show the suffi-
ciency. Without loss of generality, assume n = 3 and p = 1. The general case
can be shown by an additional induction.

Let

C =

C11 C12 X13

C21 C22 C23

Y31 C32 C33

 ,
where X13 and Y31 are to be determined so that C ∈ C[α, β], which is equivalent
to requiring the two inequalities

ei(
π
2−β)C + e−i(

π
2−β)C∗ ≥ 0, (21)

ei(−
π
2−α)C + e−i(−

π
2−α)C∗ ≥ 0, (22)

hold simultaneously. To find suchX13 and Y31, we partition ei(
π
2−β)C+e−i(

π
2−β)C∗

with compatible dimensions into

ei(
π
2−β)C + e−i(

π
2−β)C∗ =

 A B X
B∗ E F
X∗ F ∗ G

 .
When

[
C11 C12

C21 C22

]
,

[
C22 C23

C32 C33

]
∈ C[α, β], both

[
A B
B∗ E

]
and

[
E F
F ∗ G

]
are

positive semidefinite. By [31, Theorem 3.2], if we let X = BE†F , i.e.,

ei(
π
2−β)X13 + e−i(

π
2−β)Y ∗31 = BE†F, (23)

where E† is the Moore-Penrose pseudoinverse of E, then the inequality (21)
holds. Similarly, we partition

ei(−
π
2−α)C + e−i(−

π
2−α)C∗ =

 Ã B̃ X̃

B̃∗ Ẽ F̃

X̃∗ F̃ ∗ G̃


and let X̃ = B̃Ẽ†F̃ , i.e.,

ei(−
π
2−α)X13 + e−i(−

π
2−α)Y ∗31 = B̃Ẽ†F̃ . (24)

Then the inequality (22) holds. Finally, solving equations (23) and (24) together
yields desired X13 and Y31 so that C ∈ C[α, β].
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10. Banded sectorial matrix decomposition

In this section, we discuss a matrix decomposition problem, which can be
regarded as a dual problem of the banded sectorial matrix completion studied
in the previous section. A p-banded matrix

C =



C11 · · · C1,p+1 0
...

. . .

Cp+1,1 Cn−p,n
. . .

...
0 Cn,n−p · · · Cnn

 ,

where Cij ∈ Cni×nj , is said to admit a positive semidefinite decomposition if it

holds C = C1 + · · ·+ Cn−p as in Figure 2, with Cl = diag{0, C̃l, 0} and C̃l ≥ 0
for l = 1, . . . , n − p. It is shown in [32] that C admits a positive semidefinite
decomposition if and only if C ≥ 0.

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

	
   	
   ∗
	
   	
   ∗
∗ ∗ ∗

	
   	
   ∗
	
   	
   ∗
∗ ∗ ∗

	
   	
   ∗
	
   	
   ∗
∗ ∗ ∗

	
   	
   ∗
	
   	
   ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗	
   	
   	
  

	
   0 	
  
	
   	
   	
  0 	
   	
  

	
   0 	
  
	
   	
   0

= + ⋯ +

0 	
   	
  
	
   0 	
  
	
   	
   0	
   	
   	
  

	
   0 	
  
	
   	
   	
  ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

0

0

0

0

0

0

Figure 2: Banded matrix decomposition.

Extending to the realm of sectorial matrices, we say a matrix C admits a
decomposition in C[α, β] with 0 ≤ β−α < π if it holds C = C1+ · · ·+Cn−p with

Cl = diag{0, C̃l, 0} and C̃l ∈ C[α, β] for l = 1, . . . , n− p. We have the following
result.

Theorem 10.1. A p-banded matrix C admits a decomposition in C[α, β] if and
only if C ∈ C[α, β].

Proof. We first show the necessity. From C̃l ∈ C[α, β], we have

ei(
π
2−β)C̃l + e−i(

π
2−β)C̃∗l ≥ 0 and ei(−

π
2−α)C̃l + e−i(−

π
2−α)C̃∗l ≥ 0.

Then,

ei(
π
2−β)C + e−i(

π
2−β)C∗ =

n−p∑
l=1

(
ei(

π
2−β)Cl + e−i(

π
2−β)C∗l

)
≥ 0,

ei(−
π
2−α)C + e−i(−

π
2−α)C∗ =

n−p∑
l=1

(
ei(−

π
2−α)Cl + e−i(−

π
2−α)C∗l

)
≥ 0,

from which C ∈ C[α, β] follows.
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We will show the sufficiency by construction. Without loss of generality,
assume n = 3 and p = 1. The general case can be shown by an additional
induction.

Let

C =

C11 C12 0
C21 C22 C23

0 C32 C33

 =

C11 C12 0
C21 X22 0
0 0 0

+

0 0 0
0 Y22 C23

0 C32 C33

 ,
where X22 and Y22 are to be determined so that

[
C11 C12

C21 X22

]
,

[
Y22 C23

C32 C33

]
∈

C[α, β]. By C ∈ C[α, β], we have

ei(
π
2−β)C + e−i(

π
2−β)C∗ ≥ 0, (25)

ei(−
π
2−α)C + e−i(−

π
2−α)C∗ ≥ 0. (26)

Partitioning ei(
π
2−β)C + e−i(

π
2−β)C∗ with compatible dimensions into

ei(
π
2−β)C + e−i(

π
2−β)C∗ =

 A B 0
B∗ E F
0 F ∗ G

 =

 A B 0
B∗ X 0
0 0 0

+

0 0 0
0 Y F
0 F ∗ G

 ,
we have

[
A B
B∗ E

]
≥ 0, which implies R(B) ⊂ R(A) [17, Theorem 1.19], where

R denotes the range. Moreover, if we set X = B∗A†B, we can see that the

generalized Schur complement of A in

[
A B
B∗ X

]
equals 0. Thus, by a property

of generalized Schur complement [17, Theorem 1.20], we have

[
A B
B∗ X

]
≥ 0.

It remains to show that Y ≥ 0 and

[
Y F
F ∗ G

]
≥ 0. Since Y = E − X =

E − B∗A†B is the generalized Schur complement of A in

[
A B
B∗ E

]
, we have

Y ≥ 0. Furthermore, by  A B 0
B∗ E F
0 F ∗ G

 ≥ 0,

we can see[
E F
F ∗ G

]
−
[
B∗

0

]
A†
[
B 0

]
=

[
E −B∗A†B F

F ∗ G

]
=

[
Y F
F ∗ G

]
≥ 0.

Therefore, we have an equation of X22:

ei(
π
2−β)X22 + e−i(

π
2−β)X∗22 = B∗A†B. (27)
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Similarly, we partition

ei(−
π
2−α)C + e−i(−

π
2−α)C∗ =

 Ã B̃ 0

B̃∗ Ẽ F̃

0 F̃ ∗ G̃

 =

 Ã B̃ 0

B̃∗ X̃ 0
0 0 0

+

0 0 0

0 Ỹ F̃

0 F̃ ∗ G̃


and let X̃ = B̃∗Ã†B̃, i.e.,

ei(−
π
2−α)X22 + e−i(−

π
2−α)X∗22 = B̃∗Ã†B̃. (28)

Then

[
Ã B̃

B̃∗ X̃

]
≥ 0,

[
Ỹ F̃

F̃ ∗ G̃

]
≥ 0. Finally, solving equations (27) and (28)

together yields desired X22.

11. Kronecker and Hadamard products

The Kronecker product of A∈Cn×n and B ∈ Cm×m, denoted by A⊗ B, is
given by

A⊗B =

a11B · · · a1nB
...

...
an1B · · · annB

 ∈ Cnm×nm.

It is known that the singular values of A⊗B are given by σi(A)σj(B), 1 ≤ i ≤
n, 1 ≤ j ≤ m [5, Theorem 4.2.15]. Regarding the phases of A⊗B, we have the
following result.

Theorem 11.1. Let A ∈ Cn×n and B ∈ Cm×m be sectorial matrices. If
φ1(A) +φ1(B)−φn(A)−φm(B) < π, then A⊗B is sectorial and its phases are
given by φi(A)+φj(B), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. Let A = T ∗DT and B = R∗ER be sectorial decompositions of A and
B, respectively. Then,

A⊗B = (T ∗DT )⊗ (R∗ER) = (T ⊗R)∗(D ⊗ E)(T ⊗R), (29)

where T ⊗ R is nonsingular and D ⊗ E is diagonal unitary. Note that the
eigenvalues of D ⊗ E are given by λi(D)λj(E), 1 ≤ i ≤ n, 1 ≤ j ≤ m, where

∠(λi(D)λj(E)) = ∠λi(D) + ∠λj(E) = φi(A) + φj(B).

Since φ1(A)+φ1(B)−φn(A)−φm(B) < π, it follows that A⊗B is sectorial and
(29) is a sectorial decomposition of A ⊗ B. Furthermore, the phases of A ⊗ B
are given by ∠(λi(D)λj(E)), i.e., φi(A) + φj(B), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

As for the Hadamard product A�B, a notably elegant result on its singular
values is that [5, Theorem 5.5.4]

σ(A�B) ≺w σ(A)� σ(B).

One may expect a phase counterpart in the form of φ(A�B) ≺w φ(A) + φ(B).
The following example demonstrates that this is not true in general.
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Example 11.2. Let

A =


3− 2i 1− 2i 1 1 + i
1− 2i 2 −i −i

1 −i 1 + 3i 3i
1 + i −i 3i 1 + 4i

 and B = I.

Then

φ(A�B) = [1.3258 1.249 0 − 0.588],

φ(A) + φ(B) = [1.5303 0.7684 0.3561 − 0.7926].

It can be seen that no majorization type relation holds between φ(A � B) and
φ(A) + φ(B). This example also invalidates ∠λ(A�B) ≺w φ(A) + φ(B).

Notwithstanding, we have the following weaker result.

Theorem 11.3. Let A,B ∈ Cn×n be sectorial matrices. If φ1(A) + φ1(B) −
φn(A)− φn(B) < π, then A�B is sectorial,

φ1(A�B) ≤ φ1(A) + φ1(B) and φn(A�B) ≥ φn(A) + φn(B).

Proof. The claim follows from Theorems 11.1 and Lemma 4.1, since A�B can
be expressed as a compression of A⊗B. We offer an alternative proof below.

Let x ∈ Cn, x 6= 0. By [5, Lemma 5.1.5],

x∗(A�B)x = Tr(D∗xADxB
T ) =

n∑
i=1

λi(D
∗
xADxB

T ),

where Dx is a diagonal matrix with diagonal entries given by xi. Since

λi(D
∗
xADxB

T ) ∈W ′(D∗xADx)W ′(BT ) ⊂W ′(A)W ′(B),

we have x∗(A�B)x 6=0 and ∠x∗(A�B)x∈ [φn(A) +φn(B), φ1(A) +φ1(B)], as
required.

12. Conclusions

In this paper, we define the phases of a sectorial matrix and study their
properties. We introduce the symmetric polar decomposition and generalized
Cholesky factorization of a sectorial matrix and establish their uniqueness. The
symmetric polar decomposition seems to have advantages over the usual po-
lar decomposition, at least in defining the matrix phases. In the scalar case,
the symmetric polar decomposition takes the form c =

√
σeiφ
√
σ. A number

of useful properties of the matrix phases have been studied, including those of
compressions, Schur complements, matrix products and sums. The rank ro-
bustness of a matrix against magnitude/phase perturbations, motivated from
applications in robust control, has also been examined. A pair of problems:
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sectorial matrix completion and decomposition extending those of the positive
semidefinite completion and decomposition are studied.

The definition of phases can be generalized to matrices whose numerical
ranges contain the origin on their boundaries. We call such matrices semi-
sectorial. A number of results in this paper have potential extensions to semi-
sectorial matrices, including those on sectorial and symmetric polar decompo-
sitions, matrix products, sums, and rank robustness.

The definition of phases can be further extended to some matrices which
are not sectorial, such as block diagonal matrices with sectorial diagonal blocks,
the Kronecker products of sectorial matrices, compound sectorial matrices, etc.
These matrices are constructed from sectorial matrices and their phases can be
defined by exploiting the phases of the original sectorial matrices.

How to define phases for general nonsectorial unitoid matrices, which are
congruent to unitary matrices, remains open. A critical issue in this problem
involves determining how the phases take values and deriving their correspond-
ing properties. We expect that the notion of Riemann surface would play an
important role in studying the phases of unitoid matrices.
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